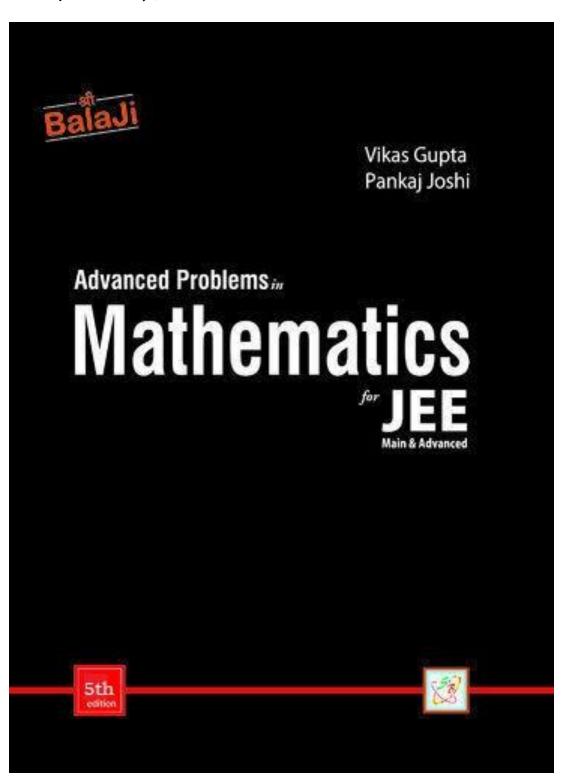
Balaji

Advanced Problems in Mathematics for IIT JEE

Main and Advanced

by

Vikas Gupta and Pankaj Joshi



Advanced Problems in

MATHEMATICS

for

JEE (MAIN & ADVANCED)

by:

Vikas Gupta

Director
Vibrant Academy India(P) Ltd.
KOTA (Rajasthan)

Pankaj Joshi

Director
Vibrant Academy India(P) Ltd.
KOTA (Rajasthan)

CONTENTS

CALCULUS		
1. Function	3 – 29	
2. Limit	30 – 44	
3. Continuity, Differentiability and Differentiation	45 – 74	
4. Application of Derivatives	75 – 97	
5. Indefinite and Definite Integration	98 – 127	
6. Area Under Curves	128 – 134	
7. Differential Equations	135 – 144	
ALGEBRA		
8. Quadratic Equations	147 – 176	
9. Sequence and Series	177 – 197	
10. Determinants	198 – 206	
11. Complex Numbers	207 – 216	
12. Matrices	217 – 224	
13. Permutation and Combinations	225 – 233	
14. Binomial Theorem	234 – 242	
15. Probability	243 – 251	
CONTRACTOR OF THE PROPERTY OF		

CO-ORDINATE GEOMETRY	
17. Straight Lines18. Circle19. Parabola20. Ellipse21. Hyperbola	267 - 280 281 - 295 296 - 302 303 - 307 308 - 312
22. Compound Angles 23. Trigonometric Equations 24. Solution of Triangles 25. Inverse Trigonometric Functions	315 - 334 335 - 343 344 - 359 360 - 370

VECTOR & 3DIMENSIONAL GEOMETRY

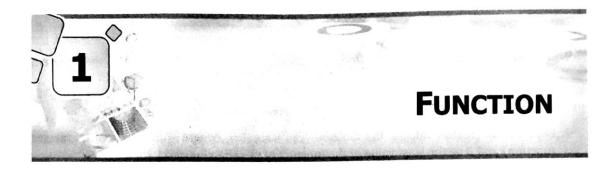
26. Vector & 3Dimensional Geometry

373 – 389

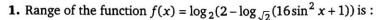
Calculus

- 1. Funtion
- 2. Limit
- 3. Continuity, Differentiability and Differentiation
- **4.** Application of Derivatives
- **5.** Indefinite and Definite Integration
- 6. Area under Curves
- 7. Differential Equations

Chapter 1 - Function



Exercise-1: Single Choice Problems



- (a) [0,1]
- (b) $(-\infty, 1]$
- (c) [-1,1]
- (d) $(-\infty, \infty)$

2. The value of a and b for which $|e^{|x-b|} - a| = 2$, has four distinct solutions, are :

- (a) $a \in (-3, \infty), b = 0$ (b) $a \in (2, \infty), b = 0$ (c) $a \in (3, \infty), b \in \mathbb{R}$ (d) $a \in (2, \infty), b = a$
- 3. The range of the function:

$$f(x) = \tan^{-1} x + \frac{1}{2} \sin^{-1} x$$

- (a) $(-\pi/2, \pi/2)$
- (b) $[-\pi/2, \pi/2] \{0\}$ (c) $[-\pi/2, \pi/2]$
- (d) $(-3\pi/4, 3\pi/4)$

4. Find the number of real ordered pair(s) (x, y) for which :

$$16^{x^2+y} + 16^{x+y^2} = 1$$

- (a) 0
- (b) 1
- (d) 3

5. The complete range of values of 'a' such that $\left(\frac{1}{2}\right)^{|x|} = x^2 - a$ is satisfied for maximum number

of values of x is :

- (a) $(-\infty, -1)$
- (b) $(-\infty, \infty)$
- (c) (-1,1)

6. For a real number x, let [x] denotes the greatest integer less than or equal to x. Let $f: R \to R$ be defined by $f(x) = 2x + [x] + \sin x \cos x$. Then f is:

(a) One-one but not onto

- (b) Onto but not one-one
- (c) Both one-one and onto

(d) Neither one-one nor onto

7. The maximum value of $\sec^{-1}\left(\frac{7-5(x^2+3)}{2(x^2+2)}\right)$ is :

- (a) $\frac{5\pi}{6}$
- (b) $\frac{5\pi}{12}$ (c) $\frac{7\pi}{12}$
- (d) $\frac{2\pi}{3}$

4		Advanced Pro	oblems in Mathematics for JEI
8. Number of ordere	ed pair (a, b) from the	e set $A = \{1, 2, 3, \dots \}$	4, 5} so that the function
	-bx + 10 is an injective i		
(a) 13	(b) 14	(c) 15	(d) 16
	st value of the function the least value of the fu		re [·] denotes greatest intege $ \cos x $, then:
(a) $A > B$	(b) $A < B$	(c) $A = B$	
10. Let $A = [a, \infty)$ denot	es domain, then $f:[a,\infty]$	$) \to B, f(x) = 2x^3 - 3x$	$x^2 + 6$ will have an inverse for
the smallest real va			
(a) $a = 1, B = [5, \infty)$	(b) $a = 2, B = [10, \infty]$	(c) $a = 0, B = [6,$	∞) (d) $a = -1, B = [1, ∞)$
11. Solution of the ineq	quation $\{x\}(\{x\}-1)(\{x\}$	$+2)\geq 0$	
(where {·} denotes i	fractional part function)	is:	
(a) $x \in (-2,1)$		(b) $x \in I$ (I deno	te set of integers)
(c) $x \in [0,1)$		(d) $x \in [-2, 0)$	
12. Let $f(x)$, $g(x)$ be twe equal to:	o real valued functions	then the function $h(x)$	$f(x) = 2 \max\{f(x) - g(x), 0\}$ is
(a) $f(x) - g(x) - g(x) = g(x) + g(x) = g(x) + g(x) = g(x) + g(x) = g(x) + g(x) + g(x) = g(x) + $	f(x)-f(x)	(b) $f(x) + g(x) -$	g(x)-f(x)
(c) $f(x) - g(x) + g(x) = g(x) + g(x) + g($	$\frac{f(x) - f(x)}{f(x) - f(x)}$	(d) $f(x) + g(x) +$	g(x)-f(x)
			$A = \{1, 2, 3, 4\}$. The relation
R is:			
(a) a function	(b) reflexive	(c) not symmetri	c (d) transitive
14. The true set of value	es of 'K' for which sin ⁻¹	$\left(\frac{1}{1+\sin^2 x}\right) = \frac{K\pi}{6} \text{ may}$	y have a solution is :
(a) $\left[\frac{1}{4},\frac{1}{2}\right]$	(b) [1, 3]	(c) $\left[\frac{1}{6}, \frac{1}{2}\right]$	(d) [2,4]
15. A real valued	function $f(x)$	satisfies the	functional equation
f(x-y) = f(x)f(y) -	-f(a-x)f(a+y) wher	e 'a' is a given consta	ant and $f(0) = 1$, $f(2a - x)$ is
equal to :	4) 4()		
$\begin{array}{c} \text{(a)} & -f(x) \\ \end{array}$	(b) f(x)	(c) $f(a) + f(a - x)$	f(-x)
16. Let $g: R \to R$ be given	$1 \text{ by } g(x) = 3 + 4x \text{ if } g^n$	f(x) = gogogoog((x) n times. Then inverse of
$g^{n}(x)$ is equal to:			
(a) $(x+1-4^n)\cdot 4^{-n}$	(b) $(x-1+4^n)4^{-n}$	(c) $(x+1+4^n)4^{-1}$	⁻ⁿ (d) None of these
			ote the domain of f and the
set of all real numbers	respectively. If f is surje	ctive mapping, then th	ne complete range of a is :
(a) $0 \le a \le 1$	(b) $0 < a \le 1$	(c) $0 \le a < 1$	(d) $0 < a < 1$

18. If $f:(-\infty, 2] \longrightarrow (-\infty, 4]$, where f(x) = x(4-x), then $f^{-1}(x)$ is given by :

(a)
$$2-\sqrt{4-x}$$

(a)
$$2-\sqrt{4-x}$$
 (b) $2+\sqrt{4-x}$

(c)
$$-2 + \sqrt{4-x}$$

(d)
$$-2 - \sqrt{4-x}$$

19. If $[5 \sin x] + [\cos x] + 6 = 0$, then range of $f(x) = \sqrt{3} \cos x + \sin x$ corresponding to solution set of the given equation is : (where [·] denotes greatest integer function)

(b)
$$\left(-\frac{3\sqrt{3}+2}{5},-1\right)$$
 (c) $[-2,-\sqrt{3})$

(c)
$$[-2, -\sqrt{3}]$$

$$(d)\left(-\frac{3\sqrt{3}+4}{5},-1\right)$$

20. If $f:R \to R$, $f(x) = ax + \cos x$ is an invertible function, then complete set of values of a is:

(a)
$$(-2,-1] \cup [1,2)$$
 (b) $[-1,1]$

(c)
$$(-\infty, -1] \cup [1, \infty)$$
 (d) $(-\infty, -2] \cup [2, \infty)$

21. The range of function
$$f(x) = [1 + \sin x] + \left[2 + \sin \frac{x}{2}\right] + \left[3 + \sin \frac{x}{3}\right] + \dots + \left[n + \sin \frac{x}{n}\right] \forall x \in [0, \pi],$$

 $n \in N$ ([·] denotes greatest integer function) is :

(a)
$$\left\{\frac{n^2+n-2}{2}, \frac{n(n+1)}{2}\right\}$$

(b)
$$\left\{\frac{n(n+1)}{2}\right\}$$

(c)
$$\left\{\frac{n(n+1)}{2}, \frac{n^2+n+2}{2}, \frac{n^2+n+4}{2}\right\}$$
 (d) $\left\{\frac{n(n+1)}{2}, \frac{n^2+n+2}{2}\right\}$

(d)
$$\left\{\frac{n(n+1)}{2}, \frac{n^2+n+2}{2}\right\}$$

22. If $f: R \to R$, $f(x) = \frac{x^2 + ax + 1}{x^2 + x + 1}$, then the complete set of values of 'a' such that f(x) is onto is:

(a)
$$(-\infty, \infty)$$

(b)
$$(-\infty, 0)$$

23. If f(x) and g(x) are two functions such that f(x) = [x] + [-x] and $g(x) = \{x\} \ \forall \ x \in R$ and h(x) = f(g(x)); then which of the following is incorrect?

[[-] denotes greatest integer function and {·} denotes fractional part function)

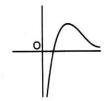
- (a) f(x) and h(x) are identical functions
- (b) f(x) = g(x) has no solution
- (c) f(x) + h(x) > 0 has no solution
- (d) f(x) h(x) is a periodic function

24. Number of elements in the range set of $f(x) = \left\lfloor \frac{x}{15} \right\rfloor \left[-\frac{15}{x} \right] \forall x \in (0, 90)$; (where [·] denotes

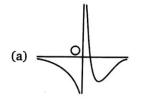
greatest integer function):

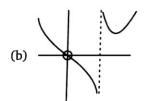
(d) Infinite

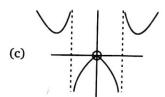
25. The graph of function f(x) is shown below:

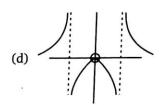


Then the graph of $g(x) = \frac{1}{f(|x|)}$ is:









26. Which of the following function is homogeneous?

(a)
$$f(x) = x \sin y + y \sin x$$

(b)
$$g(x) = xe^{\frac{y}{x}} + ye^{\frac{x}{y}}$$

(c)
$$h(x) = \frac{xy}{x + y^2}$$

(d)
$$\phi(x) = \frac{x - y \cos x}{y \sin x + y}$$

27. Let $f(x) = \begin{bmatrix} 2x+3 & ; & x \le 1 \\ a^2x+1 & ; & x > 1 \end{bmatrix}$. If the range of f(x) = R (set of real numbers) then number of integral value(s), which a may take:

28. The maximum integral value of x in the domain of $f(x) = \log_{10}(\log_{1/3}(\log_4(x-5)))$ is:

29. Range of the function $f(x) = \log_2 \left(\frac{4}{\sqrt{x+2} + \sqrt{2-x}} \right)$ is :

(b)
$$\left[\frac{1}{2}, 1\right]$$

(d)
$$\left[\frac{1}{4}, 1\right]$$

30. Number of integers statisfying the equation $|x^2 + 5x| + |x - x^2| = |6x|$ is:

31. Which of the following is not an odd function?

(a)
$$\ln \left(\frac{x^4 + x^2 + 1}{(x^2 + x + 1)^2} \right)$$

- (b) sgn(sgn(x))
- (c) $\sin(\tan x)$

(d)
$$f(x)$$
, where $f(x) + f\left(\frac{1}{x}\right) = f(x) \cdot f\left(\frac{1}{x}\right) \forall x \in \mathbb{R} - \{0\} \text{ and } f(2) = 33$

Function

32. Which of the following function is periodic with fundamental period π ?

(a)
$$f(x) = \cos x + \left[\left| \frac{\sin x}{2} \right| \right]$$
; where [·] denotes greatest integer function

(b)
$$g(x) = \frac{\sin x + \sin 7x}{\cos x + \cos 7x} + |\sin x|$$

(c)
$$h(x) = \{x\} + |\cos x|$$
; where $\{\cdot\}$ denotes fractional part function

(d)
$$\phi(x) = |\cos x| + \ln(\sin x)$$

33. Let
$$f: N \longrightarrow Z$$
 and $f(x) = \begin{bmatrix} \frac{x-1}{2} & \text{; when } x \text{ is odd} \\ -\frac{x}{2} & \text{; when } x \text{ is even} \end{bmatrix}$; then:

(a) f(x) is bijective

(b) f(x) is injective but not surjective

(c) f(x) is not injective but surjective

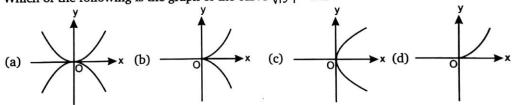
(d) f(x) is neither injective nor surjective

34. Let
$$g(x)$$
 be the inverse of $f(x) = \frac{2^{x+1} - 2^{1-x}}{2^x + 2^{-x}}$ then $g(x)$ be:

(a)
$$\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$$

(a) $\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$ (b) $-\frac{1}{2}\log_2\left(\frac{2+x}{2-x}\right)$ (c) $\log_2\left(\frac{2+x}{2-x}\right)$ (d) $\log_2\left(\frac{2-x}{2+x}\right)$

35. Which of the following is the graph of the curve $\sqrt{|y|} = x$ is ?



36. Range of $f(x) = \log_{[x]}(9 - x^2)$; where [] denotes G.I.F. is :

(b)
$$(-\infty, 2)$$

(c)
$$(-\infty, \log_2 5]$$

(d)
$$[\log_2 5, 3]$$

37. If $e^x + e^{f(x)} = e$, then for f(x):

(a) Domain is
$$(-\infty, 1)$$
 (b) Range is $(-\infty, 1]$

(c) Domain is $(-\infty, 0]$ (d) Range is $(-\infty, 0]$

38. If high voltage current is applied on the field given by the graph y + |y| - x - |x| = 0. On which of the following curve a person can move so that he remains safe?

(a)
$$y = x^2$$

(b)
$$y = \operatorname{sgn}(-e^2)$$

(c)
$$y = \log_{1/3} x$$

(d)
$$y = m + |x|; m > 3$$

39. If $|f(x) + 6 - x^2| = |f(x)| + |4 - x^2| + 2$, then f(x) is necessarily non-negative for :

(a)
$$x \in [-2, 2]$$

(b)
$$x \in (-\infty, -2) \cup (2, \infty)$$

(c)
$$x \in [-\sqrt{6}, \sqrt{6}]$$

(d)
$$x \in [-5, -2] \cup [2, 5]$$

40. Let $f(x) = \cos(px) + \sin x$ be periodic, then p must be :

(a) Positive real number

(b) Negative real number

(c) Rational

(d) Prime

41. The domain of f(x) is (0, 1), therefore, the domain of $y = f(e^x) + f(\ln|x|)$ is :

(a)
$$\left(\frac{1}{e},1\right)$$

(c)
$$\left(-1, -\frac{1}{e}\right)$$

(c)
$$\left(-1, -\frac{1}{e}\right)$$
 (d) $(-e, -1) \cup (1, e)$

42. Let $A = \{1, 2, 3, 4\}$ and $f: A \to A$ satisfy f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 1.

Suppose $g: A \to A$ satisfies g(1) = 3 and $f \circ g = g \circ f$, then $g = g \circ f$

- (a) {(1, 3), (2, 1), (3, 2), (4, 4)}
- (b) {(1, 3), (2, 4), (3, 1), (4, 2)}
- (c) {(1, 3), (2, 2), (3, 4), (4, 3)}
- (d) $\{(1, 3), (2, 4), (3, 2), (4, 1)\}$

43. The number of solutions of the equation $[y + [y]] = 2\cos x$ is :

(where $y = \frac{1}{2} [\sin x + [\sin x + [\sin x]]]$ and $[\cdot] =$ greatest integer function)

(d) Infinite

44. The function,
$$f(x) = \begin{cases} \frac{(x^{2n})}{(x^{2n} \operatorname{sgn} x)^{2n+1}} \begin{pmatrix} \frac{1}{e^x} - e^{-\frac{1}{x}} \\ \frac{1}{e^x} - e^{-\frac{1}{x}} \end{pmatrix} & x \neq 0 \\ 1 & x = 0 \end{cases}$$

(a) Odd function

- (b) Even function
- (c) Neither odd nor even function
- (d) Constant function

45. Let f(1) = 1, and $f(n) = 2\sum_{r=1}^{n-1} f(r)$. Then $\sum_{r=1}^{m} f(r)$ is equal to :

(a)
$$\frac{3^m-1}{2}$$

(c)
$$3^{m-1}$$

(d)
$$\frac{3^{m-1}-1}{2}$$

46. Let $f(x) = \frac{x}{\sqrt{1+x^2}}$, then $\underbrace{fofofo....of}_{ntimes}(x)$ is:

(a)
$$\frac{x}{\sqrt{1 + \left(\sum_{r=1}^{n} r\right) x^2}}$$
 (b) $\frac{x}{\sqrt{1 + \left(\sum_{r=1}^{n} 1\right) x^2}}$ (c) $\left(\frac{x}{\sqrt{1 + x^2}}\right)^n$ (d) $\frac{nx}{\sqrt{1 + nx^2}}$

(b)
$$\frac{x}{\sqrt{1+\left(\sum_{r=1}^{n}1\right)x^2}}$$

(c)
$$\left(\frac{x}{\sqrt{1+x^2}}\right)^r$$

(d)
$$\frac{nx}{\sqrt{1+nx^2}}$$

47. Let $f: R \to R$, $f(x) = 2x + |\cos x|$, then f is:

(a) One-one and into

(b) One-one and onto

(c) Many-one and into

(d) Many-one and onto

48. Let $f: R \to R$, $f(x) = x^3 + x^2 + 3x + \sin x$, then f is:

(a) One-one and into

(b) One-one and onto

(c) Many-one and into

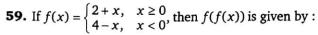
(d) Many-one and onto

49. $f(x) = \{x\} + \{x+1\} + \{x+2\} + \dots + \{x+99\}$, then $[f(\sqrt{2})]$, (where $\{\cdot\}$ denotes fractional part function and [·] denotes the greatest integer function) is equal to :

- (a) 5050
- (b) 4950
- (c) 41
- (d) 14

	•	

Func	tion	The State Section	27				
50.	If co	$t x + \csc x = \cot x$	x +	$\csc x$; $x \in [0, 2\pi]$, the	n complete set of	values of x is:
	(a)	[0, π]			(b)	$\left(0,\frac{\pi}{2}\right]$	
		$\left(0,\frac{\pi}{2}\right] \cup \left[\frac{3\pi}{2},2\pi\right)$				$\left(\pi,\frac{3\pi}{2}\right]\cup\left[\frac{7\pi}{4},2\pi\right]$,
51.	The sum	function $f(x) = 0$ h of all the eight solution	as eig ution	ght distinct real solution of $f(x) = 0$ is:	tion	and f also satisfy	f(4+x) = f(4-x). The
	(a)		(b)		(c)		(d) 15
52 .	Let f	f(x) be a polynomia = 3, $f(4) = 2$, $f(5)$	al of c = 1.	legree 5 with leadin Then f (6) is equal t	g co o :	efficient unity such	that $f(1) = 5$, $f(2) = 4$,
	(a)		(b)			120	(d) 720
53.		$f: A \to B$ be a fundament $f: A \to B$ be a fundament $f: A \to B$		such that $f(x) = \sqrt{x}$			tible, then which of the
	(a)	A = [3, 4]	(b)	A = [2, 3]	(c)	$A = [2, 2\sqrt{3}]$	(d) $[2, 2\sqrt{2}]$
54.	The	number of positive	inte	gral values of x sati	sfyin	$ \operatorname{ag}\left[\frac{x}{9}\right] = \left[\frac{x}{11}\right] \operatorname{is} : $	
	(wh	ere [·] denotes grea	test i	integer function)			
	(a)	21	(b)		(c)	23	(d) 24
55.	The	domain of function	on f($(x) = \log_{\left[x + \frac{1}{2}\right]} (2x^2)$	+ x -	1), where [·] deno	tes the greatest integer
	fund	ction is :					
	(a)	$\left[\frac{3}{2},\infty\right)$	(b)	(2,∞)	(c)	$\left(-\frac{1}{2},\infty\right)-\left\{\frac{1}{2}\right\}$	(d) $\left(\frac{1}{2},1\right)\cup\left(1,\infty\right)$
56.	The	solution set of th	ie eg	uation $[x]^2 + [x+1]$] – 3	= 0, where [·] rep	resents greatest integer
		ction is :					
		$[-1,0)\cup[1,2)$	(b)	$[-2,-1) \cup [1,2)$	(c)	[1, 2)	(d) $[-3, -2) \cup [2, 3)$
57	Whi	ch among the follo	wing	g relations is a func	ion	?	
	(a)	$x^2 + y^2 = r^2$	(b)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = r^2$	(c)	$y^2 = 4ax$	(d) $x^2 = 4ay$
	(wh	ere a, b, r are const	ants))			
58	. A fu	nciton $f: R \to R$ is	defi	$ned as f(x) = 3x^2 +$	- 1. T	hen $f^{-1}(x)$ is:	(x)
						_	
	(a)	$\frac{\sqrt{x-1}}{3}$			(b)	$\frac{1}{3}\sqrt{x}-1$	
	(c)	f^{-1} does not exis	t		(d	$\sqrt{\frac{x-1}{3}}$	



(a)
$$f(f(x)) = \begin{cases} 4+x & , & x \ge 0 \\ 6-x & , & x < 0 \end{cases}$$

(b)
$$f(f(x)) = \begin{cases} 4+x & , & x \ge 0 \\ x & , & x < 0 \end{cases}$$

(c)
$$f(f(x)) = \begin{cases} 4-x & , & x \ge 0 \\ x & , & x < 0 \end{cases}$$

(a)
$$f(f(x)) = \begin{cases} 4+x & , & x \ge 0 \\ 6-x & , & x < 0 \end{cases}$$
 (b) $f(f(x)) = \begin{cases} 4+x & , & x \ge 0 \\ x & , & x < 0 \end{cases}$ (c) $f(f(x)) = \begin{cases} 4-x & , & x \ge 0 \\ x & , & x < 0 \end{cases}$ (d) $f(f(x)) = \begin{cases} 4-2x & , & x \ge 0 \\ 4+2x & , & x < 0 \end{cases}$

60. The function
$$f:R \to R$$
 defined as $f(x) = \frac{3x^2 + 3x - 4}{3 + 3x - 4x^2}$ is :

- (a) One to one but not onto
- (b) Onto but not one to one
- (c) Both one to one and onto
- (d) Neither one to one nor onto
- **61.** The number of solutions of the equation $e^x \log |x| = 0$ is :

(d) 3

62. If complete solution set of $e^{-x} \le 4 - x$ is $[\alpha, \beta]$, then $[\alpha] + [\beta]$ is equal to :

(where [·] denotes greatest integer function)

(a) 0

(c) 1

(d) 4

63. Range of $f(x) = \sqrt{\sin(\log_7(\cos(\sin x)))}$ is:

(a) [0, 1)

(c) {0}

(d) [1, 7]

64. If domain of y = f(x) is $x \in [-3, 2]$, then domain of y = f(|[x]|):

(where [.] denotes greatest integer function)

(b) [-2, 3)

(c) [-3, 3]

65. Range of the function $f(x) = \cot^{-1}\{-x\} + \sin^{-1}\{x\} + \cos^{-1}\{x\}$, where $\{\cdot\}$ denotes fractional part function:

(a)
$$\left(\frac{3\pi}{4}, \pi\right)$$
 (b) $\left[\frac{3\pi}{4}, \pi\right]$ (c) $\left[\frac{3\pi}{4}, \pi\right]$

(b)
$$\left[\frac{3\pi}{4},\pi\right]$$

(c)
$$\left[\frac{3\pi}{4}, \pi\right]$$

66. Let $f: R - \left\{ \frac{3}{2} \right\} \to R$, $f(x) = \frac{3x+5}{2x-3}$. Let $f_1(x) = f(x)$, $f_n(x) = f(f_{n-1}(x))$ for $n \ge 2$, $n \in N$, then

 $f_{2008}(x) + f_{2009}(x) =$ (a) $\frac{2x^2 + 5}{2x - 3}$ (b) $\frac{x^2 + 5}{2x - 3}$ (c) $\frac{2x^2 - 5}{2x - 3}$ (d) $\frac{x^2 - 5}{2x - 3}$

(a)
$$\frac{2x^2+5}{2x-3}$$

(b)
$$\frac{x^2+5}{2x-3}$$

(c)
$$\frac{2x^2-5}{2x-3}$$

67. Range of the function, $f(x) = \frac{(1+x+x^2)(1+x^4)}{x^3}$, for x > 0 is :

(a) $[0,\infty)$

(b) $[2, \infty)$

(c) [4,∞)

(d) $[6, \infty)$

(a) $[0, \infty)$ (b) $[2, \infty)$ (c) $[4, \infty)$ **68.** The function $f: (-\infty, 3] \to (0, e^7]$ defined by $f(x) = e^{x^3 - 3x^2 - 9x + 2}$ is:

(a) Many-one and onto

(b) Many-one and into

(c) One to one and onto

(d) One to one and into

Black Sales	A CONTRACTOR OF THE PROPERTY O			
69.	If $f(x) = \sin \left\{ \log \left(\frac{\sqrt{4}}{1} \right) \right\}$	$\left\{\frac{-x^2}{-x}\right\}$; $x \in R$, then range	e of $f(x)$ is given by:	
70	(a) [-1, 1]	(b) [0, 1]	(c) (-1, 1)	(d) None of these
/0.	set of values of a for	which the function $f:R$ -	$\rightarrow R$, given by $f(x) = x$	$x^3 + (a+2)x^2 + 3ax + 10$
	is one-one is given by			(1) (4)
	(a) $(-\infty,1] \cup [4,\infty)$		(c) [1,∞)	
71.	If the range of the fun-	$ction f(x) = tan^{-1}(3x^2 +$	$bx + c$) is $\left[0, \frac{\pi}{2}\right]$; (don	nain is R), then:
	(a) $b^2 = 3c$	(b) $b^2 = 4c$	(c) $b^2 = 12c$	(d) $b^2 = 8c$
72 .	Let $f(x) = \sin^{-1} x - \cos^{-1} x$ distinct solutions is :	$os^{-1} x$, then the set of val	ues of k for which of	f(x) = k has exactly two
		(b) $\left(0,\frac{\pi}{2}\right)$	(c) $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$	(d) $\left[\pi, \frac{3\pi}{2}\right]$
	(2)	(2)	[2 2)	[2]
73.	Let $f: R \to R$ is defined	d by $f(x) = \begin{cases} (x+1) \\ \ln x + (b^2 - 1) \end{cases}$	$(3b+10)$; $x \le 1$. If $f(3b+10)$; $x > 1$	(x) is invertible, then the
	set of all values of 'b'			
	(a) {1, 2}	(b) φ	(c) {2,5}	(d) None of these
74.	Let $f(x)$ is continu	ous function with rang	ge $[-1, 1]$ and $f(x)$	is defined $\forall x \in R$. If
	$g(x) = \frac{e^{f(x)} - e^{ f(x) }}{e^{f(x)} + e^{ f(x) }},$	then range of $g(x)$ is:		
	6, , + 6,, ,		٦ 2 - 1	
	(a) [0, 1]		(b) $\left[0, \frac{e^2 + 1}{e^2 - 1}\right]$	
	(c) $\left[0, \frac{e^2 - 1}{e^2 + 1}\right]$		(d) $\left[\frac{-e^2+1}{e^2+1}, 0\right]$	
75.	Consider all functions	$f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 4\}$	3, 4) which are one-o	one, onto and satisfy the
	following property:		,	one, onto and satisfy the
	if $f(k)$ is odd then $f(k)$	+ 1) is even, $k = 1, 2, 3$.		
	The number of such fu	inctions is :		
	(a) 4	(b) 8	(c) 12	(d) 16
76.	Consider the function	$f: R - \{1\} \to R - \{2\} \text{ giv}$	ven by $f(x) = \frac{2x}{x-1}$. The	
	(a) f is one-one but r	not onto	(b) f is onto but not	one-one
	We shall state and seems to the state of the			

(c) f is neither one-one nor onto

(d) f is both one-one and onto

(a) [-2, 4] (b) [-1, 2] (c) [-3, 9] **78.** Let $f: R \to R$ and $f(x) = \frac{x(x^4 + 1)(x + 1) + x^4 + 2}{x^2 + x + 1}$, then f(x) is: (a) [-2, 4]

(a) One-one, into

(b) Many-one, onto

(c) One-one, onto

(d) Many one, into

79. Let f(x) be defined as:

$$f(x) = \begin{cases} |x| & 0 \le x < 1 \\ |x-1| + |x-2| & 1 \le x < 2 \\ |x-3| & 2 \le x < 3 \end{cases}$$

The range of function $g(x) = \sin(7(f(x)))$ is:

(a) [0, 1]

(b) [-1, 0]

(c) $\left[-\frac{1}{2}, \frac{1}{2}\right]$ (d) [-1, 1]

(d) [-2, 2]

80. If $[x]^2 - 7[x] + 10 < 0$ and $4[y]^2 - 16[y] + 7 < 0$, then [x + y] cannot be ([·] denotes greatest integer function):

(a) 7

(d) both (b) and (c)

(a) 7 (b) 8 (c) 9 **81.** Let $f: R \to R$ be a function defined by $f(x) = \frac{e^{|x|} - e^{-x}}{e^x + e^{-x}}$, then

(a) f(x) is many one, onto function

(b) f(x) is many one, into function

(c) f(x) is decreasing function $\forall x \in R$

(d) f(x) is bijective function

82. The function f(x) satisfy the equation $f(1-x) + 2f(x) = 3x \ \forall \ x \in \mathbb{R}$, then $f(0) = 3x \ \forall \ x \in \mathbb{R}$

(c) 0

83. Let $f:[0,5] \to [0,5]$ be an invertible function defined by $f(x) = ax^2 + bx + c$, where $a,b,c \in R$, $abc \neq 0$, then one of the root of the equation $cx^2 + bx + a = 0$ is:

(d) a+b+c

84. Let $f(x) = x^2 + \lambda x + \mu \cos x$, λ being an integer and μ is a real number. The number of ordered pairs (λ, μ) for which the equation f(x) = 0 and f(f(x)) = 0 have the same (non empty) set of real roots is:

(a) 2

(b) 3

(c) 4

(d) 6

85. Consider all function $f:\{1,2,3,4\} \rightarrow \{1,2,3,4\}$ which are one-one, onto and satisfy the following property:

if f(k) is odd then f(k+1) is even, k=1,2,3.

The number of such function is:

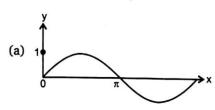
(a) 4

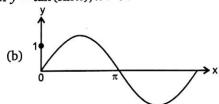
(b) 8

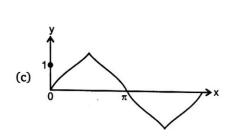
(c) 12

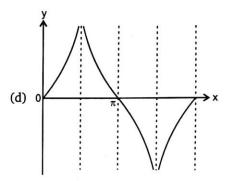
(d) 16

86. Which of the following is closest to the graph of $y = \tan(\sin x)$, x > 0?









87. Consider the function $f: R - \{1\} \to R - \{2\}$ given by $f(x) = \frac{2x}{x-1}$. Then

- (a) f is one-one but not onto
- (b) f is onto but not one-one
- (c) f is neither one-one nor onto
- (d) f is both one-one and onto

88. If range of function f(x) whose domain is set of all real numbers is [-2, 4], then range of function $g(x) = \frac{1}{2}f(2x+1)$ is equal to:

- (d) [-2, 2]

(a) [-2,4] (b) [-1,2] (c) [-3,9] **89.** Let $f:R \to R$ and $f(x) = \frac{x(x^4+1)(x+1)+x^4+2}{x^2+x+1}$, then f(x) is :

- (a) One-one, into
- (b) Many one, onto (c) One-one, onto
- (d) Many one, into

90. Let f(x) be defined as

$$f(x) = \begin{cases} |x| & 0 \le x < 1\\ |x-1|+|x-2| & 1 \le x < 2\\ |x-3| & 2 \le x < 3 \end{cases}$$

The range of function $g(x) = \sin(7(f(x)))$ is :

- (a) [0,1]
- (b) [-1,0]
- (c) $\left[-\frac{1}{2},\frac{1}{2}\right]$
- (d) [-1,1]

91. The number of integral values of x in the domain of function f defined as $f(x) = \sqrt{\ln|\ln|x||} + \sqrt{7|x| - |x|^2 - 10}$ is:

- (a) 5
- (c) 7
- (d) 8

92. The complete set of values of x in the domain of function $f(x) = \sqrt{\log_{x+2(x)} ([x]^2 - 5[x] + 7)}$ (where [.] denote greatest integer function and {.} denote fraction part function) is :

(a)
$$\left(-\frac{1}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(2,\infty)$$

(b)
$$(0,1) \cup (1,\infty)$$

(c)
$$\left(-\frac{2}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(1,\infty)$$

(d)
$$\left(-\frac{1}{3},0\right)\cup\left(\frac{1}{3},1\right)\cup(1,\infty)$$

93. The number of integral ordered pair (x, y) that satisfy the system of equation |x + y - 4| = 5 and |x-3|+|y-1|=5 is/are:

94. Let $f: R \to R$, where $f(x) = \frac{x^2 + ax + 1}{x^2 + x + 1}$. Then the complete set of values of 'a' such that f(x) is onto is:

(a)
$$(-\infty, \infty)$$

(d) Empty set

95. If $A = \{1, 2, 3, 4\}$ and $f: A \rightarrow A$, then total number of invertible function 'f' such that $f(2) \neq 2$, $f(4) \neq 4$, f(1) = 1 is equal to :

(d) 4

96. The domain of definition of $f(x) = \log_{(x^2-x+1)} (2x^2 - 7x + 9)$ is :

(b) $R - \{0\}$

(c) $R - \{0, 1\}$

(d) $R - \{1\}$

97. If $A = \{1, 2, 3, 4\}, B = \{1, 2, 3, 4, 5, 6\}$ and $f: A \to B$ is an injective mapping satisfying $f(i) \neq i$, then number of such mappings are:

(b) 181

(c) 183

(d) none of these

98. Let $f(x) = x^2 - 2x - 3$; $x \ge 1$ and $g(x) = 1 + \sqrt{x + 4}$; $x \ge -4$ then the number of real solutions of equation f(x) = g(x) is/are

(a) 0

(b) 1

(c) 2

(d) 4

15 Function Answers 10. (a) (b) (c) (c) 5. (d) 7. (d) 8. (c) 9. (c) 4. (b) 6. (a) 19. (d) 20. (c) 11. (b) 12. (c) 13. (c) 14. (b) 15. (a) 17. (d) 18. (a) 16. (a) 30. 21. (d) 22. (d) 23. (b) 24. (b) 25. (c) 26. (b) 27. (c) 28. (c) 29. (b) (c) (d) 32. (b) 33. (a) 34. (c) 35. (b) 36. 37. 38. 39. 40. 31. (c) (a) (d) (c) (a) 42. (b) 44. (b) 45. (c) 46. (b) (b) (b) 43. (a) 47. 48. (b) 49. (c) 50. (c) (b) (c) (c) 54. (d) 55. (a) 56. (b) 57. (d) 58. (c) 59. (a) (b) 60. (c) (b) 65. (d) 66. 61. (b) 62. (c) 63. 64. (a) 67. (d) 68. (a) 69. (a) 70. (b) 74. (d) 75. (c) 76. (d) (c) 72. (a) 73. (a) 77. (b) 78. (d) 79. (d) 80. (c) 85. (c) (d) (b) 82. (b) 83. (a) 84. (c) 86. (b) 87. 88. 81. (b) 89. (d) 90. (d) 96. 92. (d) 93. (d) 94. (d) 95. (c) (c) (b) 97. (b) 98. (b)

Exercise-2: One or More than One Answer is/are Correct

1. f(x) is an even periodic function with period 10. In [0, 5], $f(x) = \begin{cases} 3x^2 - 8 & 2 \le x < 4 \text{. Then :} \\ 10x & 4 \le x \le 5 \end{cases}$

(a)
$$f(-4) = 40$$

(b)
$$\frac{f(-13) - f(11)}{f(13) + f(-11)} = \frac{17}{21}$$

(c) f(5) is not defined

(d) Range of f(x) is [0, 50]

2. Let $f(x) = ||x^2 - 4x + 3| - 2|$. Which of the following is/are correct?

(a) f(x) = m has exactly two real solutions of different sign $\forall m > 2$

(b) f(x) = m has exactly two real solutions $\forall m \in (2, \infty) \cup \{0\}$

(c) f(x) = m has no solutions $\forall m < 0$

(d) f(x) = m has four distinct real solution $\forall m \in (0, 1)$

3. Let
$$f(x) = \cos^{-1}\left(\frac{1-\tan^2(x/2)}{1+\tan^2(x/2)}\right)$$

Which of the following statement(s) is/are correct about f(x)?

(a) Domain is R

(b) Range is $[0, \pi]$

(c) f(x) is even

(d) f(x) is derivable in $(\pi, 2\pi)$

4. $|\log_e |x|| = |k-1| - 3$ has four distinct roots then k satisfies: (where $|x| < e^2, x \ne 0$)

(a)
$$(-4, -2)$$

(c)
$$(e^{-1}, e)$$

(d)
$$(e^{-2}, e^{-1})$$

5. Which of the following functions are defined for all $x \in R$?

(Where $[\cdot]$ = denotes greatest integer function)

(a)
$$f(x) = \sin[x] + \cos[x]$$

(b)
$$f(x) = \sec^{-1}(1 + \sin^2 x)$$

(c)
$$f(x) = \sqrt{\frac{9}{8} + \cos x + \cos 2x}$$

(d)
$$f(x) = \tan(\ln(1+|x|))$$

6. Let $f(x) = \begin{cases} x^2 & 0 < x < 2 \\ 2x - 3 & 2 \le x < 3, \text{ then the true equations} : \\ x + 2 & x \ge 3 \end{cases}$

(a)
$$f\left(f\left(f\left(\frac{3}{2}\right)\right)\right) = f\left(\frac{3}{2}\right)$$

(b)
$$1 + f\left(f\left(\frac{5}{2}\right)\right) = f\left(\frac{5}{2}\right)$$

(c)
$$f(f(f(2))) = f(1)$$

(d)
$$f(f(f(\dots, f(4))\dots)) = 2012$$

7. Let $f: \left[\frac{2\pi}{3}, \frac{5\pi}{3}\right] \longrightarrow [0, 4]$ be a function defined as $f(x) = \sqrt{3} \sin x - \cos x + 2$, then:

(a)
$$f^{-1}(1) = \frac{4\pi}{3}$$

(b)
$$f^{-1}(1) = \pi$$

(a)
$$f^{-1}(1) = \frac{4\pi}{3}$$
 (b) $f^{-1}(1) = \pi$ (c) $f^{-1}(2) = \frac{5\pi}{6}$ (d) $f^{-1}(2) = \frac{7\pi}{6}$

(d)
$$f^{-1}(2) = \frac{7\pi}{6}$$

Function	17

8. Let f(x) be invertible function and let $f^{-1}(x)$ be its inverse. Let equation $f(f^{-1}(x)) = f^{-1}(x)$ has two real roots α and β (with in domain of f(x)), then:

- (a) f(x) = x also have same two real roots
- (b) $f^{-1}(x) = x$ also have same two real roots
- (c) $f(x) = f^{-1}(x)$ also have same two real roots
- (d) Area of triangle formed by (0, 0), $(\alpha, f(\alpha))$, and $(\beta, f(\beta))$ is 1 unit

9. The function
$$f(x) = \cos^{-1} x + \cos^{-1} \left(\frac{x}{2} + \frac{\sqrt{3 - 3x^2}}{2} \right)$$
, then :

(a) Range of f(x) is $\left[\frac{\pi}{3}, \frac{10\pi}{3}\right]$

(b) Range of f(x) is $\left[\frac{\pi}{3}, \frac{5\pi}{3}\right]$

(c) f(x) is one-one for $x \in \left[-1, \frac{1}{2}\right]$ (d) f(x) is one-one for $x \in \left[\frac{1}{2}, 1\right]$

- **10.** Let $f:R \to R$ defined by $f(x) = \cos^{-1}(-\{-x\})$, where $\{x\}$ is fractional part function. Then which of the following is/are correct?
 - (a) f is many-one but not even function
- (b) Range of f contains two prime numbers

(c) f is a periodic

- (d) Graph of f does not lie below x-axis
- 11. Which option(s) is/are true?
 - (a) $f: R \to R$, $f(x) = e^{|x|} e^{-x}$ is many-one into function
 - (b) $f: R \to R$, $f(x) = 2x + |\sin x|$ is one-one onto

(c)
$$f: R \to R$$
, $f(x) = \frac{x^2 + 4x + 30}{x^2 - 8x + 18}$ is many-one onto

(d)
$$f: R \to R$$
, $f(x) = \frac{2x^2 - x + 5}{7x^2 + 2x + 10}$ is many-one into

12. If $h(x) = \left[\ln \frac{x}{e}\right] + \left[\ln \frac{e}{x}\right]$, where [·] denotes greatest integer function, then which of the

following are true?

- (a) range of h(x) is $\{-1, 0\}$
- (b) If h(x) = 0, then x must be irrational
- (c) If h(x) = -1, then x can be rational as well as irrational
- (d) h(x) is periodic function

13. If
$$f(x) = \begin{cases} x^3 & ; & x \in Q \\ -x^3 & ; & x \notin Q \end{cases}$$
, then:

(a) f(x) is periodic

(b) f(x) is many-one

(c) f(x) is one-one

(d) range of the function is R

18

14. Let f(x) be a real valued continuous function such that

$$f(0) = \frac{1}{2}$$
 and $f(x+y) = f(x)f(a-y) + f(y)f(a-x) \ \forall \ x, y \in R$,

then for some real a:

(a) f(x) is a periodic function

(b) f(x) is a constant function

(c) $f(x) = \frac{1}{2}$

(d) $f(x) = \frac{\cos x}{2}$

15. f(x) is an even periodic function with period 10. In [0, 5], $f(x) = \begin{cases} 2x & 0 \le x < 2 \\ 3x^2 - 8 & 2 \le x < 4. \text{ Then } : \\ 10x & 4 \le x \le 5 \end{cases}$

(a) f(-4) = 40

(b) $\frac{f(-13) - f(11)}{f(13) + f(-11)} = \frac{17}{21}$

(c) f(5) is not defined

(d) Range of f(x) is [0, 50]

16. For the equation $\frac{e^{-x}}{1+x} = \lambda$ which of the following statement(s) is/are correct?

- (a) when $\lambda \in (0, \infty)$ equation has 2 real and distinct roots
- (b) when $\lambda \in (-\infty, -e^2)$ equation has 2 real and distinct roots
- (c) when $\lambda \in (0, \infty)$ equation has 1 real root
- (d) when $\lambda \in (-e, 0)$ equation has no real root

17. For $x \in \mathbb{R}^+$, if $x, [x], \{x\}$ are in harmonic progression then the value of x can not be equal to: (where $[\cdot]$ denotes greatest integer function, $\{\cdot\}$ denotes fractional part function)

(a)
$$\frac{1}{\sqrt{2}}\tan\frac{\pi}{8}$$

(b)
$$\frac{1}{\sqrt{2}}\cot\frac{\pi}{8}$$

(c)
$$\frac{1}{\sqrt{2}}\tan\frac{\pi}{12}$$

(a)
$$\frac{1}{\sqrt{2}} \tan \frac{\pi}{8}$$
 (b) $\frac{1}{\sqrt{2}} \cot \frac{\pi}{8}$ (c) $\frac{1}{\sqrt{2}} \tan \frac{\pi}{12}$ (d) $\frac{1}{\sqrt{2}} \cot \frac{\pi}{12}$

18. The equation ||x-1|+a|=4, $a \in R$, has :

- (a) 3 distinct real roots for unique value of a. (b) 4 distinct real roots for $a \in (-\infty, -4)$
- (c) 2 distinct real roots for |a| < 4
- (d) no real roots for a > 4
- **19.** Let $f_n(x) = (\sin x)^{1/n} + (\cos x)^{1/n}, x \in R$, then :

(a)
$$f_2(x) > 1$$
 for all $x \in \left(2k\pi, (4k+1)\frac{\pi}{2}\right), k \in I$

(b) $f_2(x) = 1 \text{ for } x = 2k\pi, k \in I$

(c)
$$f_2(x) > f_3(x)$$
 for all $x \in \left(2k\pi, (4k+1)\frac{\pi}{2}\right), k \in I$

(d)
$$f_3(x) \ge f_5(x)$$
 for all $x \in \left(2k\pi, (4k+1)\frac{\pi}{2}\right), k \in I$

(Where I denotes set of integers)

20. If the domain of $f(x) = \frac{1}{\pi} \cos^{-1} \left| \log_3 \left(\frac{x^2}{3} \right) \right|$ where, x > 0 is [a, b] and the range of f(x) is [c, d],

- (a) a, b are the roots of the equation $x^4 3x^3 x + 3 = 0$
- (b) a, b are the roots of the equation $x^4 x^3 + x^2 2x + 1 = 0$
- (c) $a^3 + d^3 = 1$
- (d) $a^2 + b^2 + c^2 + d^2 = 11$
- **21.** The number of real values of x satisfying the equation; $\left\lceil \frac{2x+1}{3} \right\rceil + \left\lceil \frac{4x+5}{6} \right\rceil = \frac{3x-1}{2}$ are greater than or equal to {[] denotes greatest integer function):

- **22.** Let $f(x) = \sin^6\left(\frac{x}{4}\right) + \cos^6\left(\frac{x}{4}\right)$. If $f^n(x)$ denotes n^{th} derivative of f evaluated at x. Then which of the following hold?

- (a) $f^{2014}(0) = -\frac{3}{8}$ (b) $f^{2015}(0) = \frac{3}{8}$ (c) $f^{2010}\left(\frac{\pi}{2}\right) = 0$ (d) $f^{2011}\left(\frac{\pi}{2}\right) = \frac{3}{8}$
- 23. Which of the following is(are) incorrect?
 - (a) If $f(x) = \sin x$ and $g(x) = \ln x$ then range of g(f(x)) is [-1, 1]
 - (b) If $x^2 + ax + 9 > x \forall x \in R$ then -5 < a < 7
 - (c) If $f(x) = (2011 x^{2012})^{\frac{1}{2012}}$ then $f(f(2)) = \frac{1}{2}$
 - (d) The function $f: R \to R$ defined as $f(x) = \frac{x^2 + 4x + 30}{x^2 8x + 18}$ is not surjective.
- **24.** If [x] denotes the integral part of x for real x, and

$$S = \left[\frac{1}{4}\right] + \left[\frac{1}{4} + \frac{1}{200}\right] + \left[\frac{1}{4} + \frac{1}{100}\right] + \left[\frac{1}{4} + \frac{3}{200}\right] + \dots + \left[\frac{1}{4} + \frac{199}{200}\right]$$
 then

- (a) S is a composite number
- (b) Exponent of S in $\lfloor 100 \rfloor$ is 12 (d) $^{2S}C_r$ is max when r = 51
- (c) Number of factors of S is 10

Answers

1.	(a, b, d)	2,	(a, b, c)	3.	(c, d)	4.	(a, b)	5.	(a, b, c)	6,	(a, b, c, d)
7.	(a, d)	8.	(a, b, c)	9.	(b, c)	10.	(a, b, d)	11.	(a, b, d)	12.	(a, c)
13.	(c, d)	14.	(a, b, c)	15.	(a, b, d)	16.	(b, c, d)	17.	(a, c, d)	18.	(a, b, c, d)
19.	(a, b)	20.	(a, d)	21.	(a, b, c)	22.	(a, c, d)	23.	a, b)	24.	(a, b)

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let $f(x) = \log_{\{x\}}[x]$

 $g(x) = \log_{\{x\}} \{x\}$

 $h(x)\log_{[x]}\{x\}$

where [], { } denotes the greatest integer function and fractional part fucntion respectively.

- **1.** For $x \in (1, 5)$ the f(x) is not defined at how many points :
 - (a) 5
- (b) 4
- (c) 3
- (d) 2
- **2.** If $A = \{x : x \in \text{domain of } f(x)\}$ and $B = \{x : x \in \text{domain of } g(x)\}$ then $\forall x \in \{1, 5\}$, A B will be:
 - (a) (2, 3)
- (b) (1, 3)
- (c) (1, 2)
- (d) None of these

- **3.** Domain of h(x) is:
 - (a) [2, ∞)
- (b) [1, ∞)
- (c) $[2, \infty) \{I\}$
- (d) $R^+ \{I\}$

I denotes integers.

Paragraph for Question Nos. 4 to 6

 θ is said to be well behaved if it lies in interval $\left[0,\frac{\pi}{2}\right]$. They are intelligent if they make domain

of f + g and g equal. The values of θ for which $h(\theta)$ is defined are handsome. Let

$$f(x) = \sqrt{\theta x^2 - 2(\theta^2 - 3)x - 12\theta}, g(x) = \ln(x^2 - 49),$$

$$h(\theta) = \ln \left[\int_{0}^{\theta} 4\cos^{2}t \, dt - \theta^{2} \right]$$
, where θ is in radians.

- **4.** Complete set of values of θ which are well behaved as well as intelligent is:
 - (a) $\left[\frac{3}{4}, \frac{\pi}{2}\right]$
- (b) $\left[\frac{3}{5}, \frac{7}{8}\right]$
- (c) $\left[\frac{5}{6}, \frac{\pi}{2}\right]$
- (d) $\left[\frac{6}{7}, \frac{\pi}{2}\right]$
- **5.** Complete set of values of θ which are intelligent is :
 - (a) $\left[\frac{6}{7}, \frac{7}{2}\right]$
- (b) $\left(0,\frac{\pi}{3}\right]$
- (c) $\left[\frac{1}{4}, \frac{6}{7}\right]$
- (d) $\left[\frac{1}{2}, \frac{\pi}{2}\right]$
- **6.** Complete set of values of θ which are well behaved, intelligent and handsome is :
 - (a) $\left[0,\frac{\pi}{2}\right]$
- (b) $\left[\frac{6}{7}, \frac{\pi}{2}\right]$
- (c) $\left[\frac{3}{4}, \frac{\pi}{2}\right]$
- (d) $\left[\frac{3}{5}, \frac{\pi}{2}\right]$

Paragraph for Question Nos. 7 to 8

Let f(x) = 2 - |x - 3|, $1 \le x \le 5$ and for rest of the values f(x) can be obtained by using the relation $f(5x) = \alpha f(x) \forall x \in R$.

- 7. The maximum value of f(x) in $[5^4, 5^5]$ for $\alpha = 2$ is :
- (b) 32
- (d) 8

- **8.** The value of f(2007), taking $\alpha = 5$, is :
 - (a) 1118
- (b) 2007
- (c) 1250
- (d) 132

Paragraph for Question Nos. 9 to 10

An even periodic function $f:R \to R$ with period 4 is such that

$$f(x) = \begin{bmatrix} \max(|x|, x^2) & ; & 0 \le x < 1 \\ x & ; & 1 \le x \le 2 \end{bmatrix}$$

- **9.** The value of $\{f(5.12)\}\$ (where $\{\cdot\}$ denotes fractional part function), is :
 - (a) $\{f(3.26)\}$
- (b) $\{f(7.88)\}$
- (c) $\{f(2.12)\}$
- (d) $\{f(5.88)\}$
- **10.** The number of solutions of $f(x) = |3\sin x|$ for $x \in (-6, 6)$ are :
 - (a) 5
- (b) 3
- (c) 7
- (d) 9

Paragraph for Question Nos. 11 to 12

$$Let f(x) = \frac{2|x|-1}{x-3}$$

- 11. Range of f(x):
 - (a) $R \{3\}$
- (b) $\left(-\infty, \frac{1}{3}\right] \cup (2, \infty)$ (c) $\left(-2, \frac{1}{3}\right] \cup (2, \infty)$ (d) R
- **12.** Range of the values of 'k' for which f(x) = k has exactly two distinct solutions :
 - (a) $\left(-2, \frac{1}{3}\right)$
- (b) (-2, 1]
- (c) $\left[0, \frac{2}{3}\right]$

Paragraph for Question Nos. 13 to 14

Let f(x) be a continuous function (define for all x) which $f^3(x) - 5f^2(x) + 10f(x) - 12 \ge 0$, $f^2(x) - 4f(x) + 3 \ge 0$ and $f^2(x) - 5f(x) + 6 \le 0$

- **13.** If distinct positive number b_1 , b_2 and b_3 are in G.P. then $f(1) + \ln b_1$, $f(2) + \ln b_2$, $f(3) + \ln b_3$ are in:
 - (a) A.P.
- (b) G.P.
- (c) H.P.
- (d) A.G.P.
- **14.** The equation of tangent that can be drawn from (2, 0) on the curve $y = x^2 f(\sin x)$ is :

- (a) y = 24(x+2) (b) y = 12(x+2) (c) y = 24(x-2) (d) y = 12(x-2)

Paragraph for Question Nos. 15 to 16

Let $f:[2,\infty)\to[1,\infty)$ defined by $f(x)=2^{x^4-4x^2}$ and $g:\left[\frac{\pi}{2},\pi\right]\to A$ defined by $g(x) = \frac{\sin x + 4}{\sin x - 2}$ be two invertible functions, then

15. $f^{-1}(x)$ is equal to

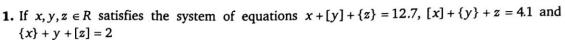
(a)
$$\sqrt{2+\sqrt{4-\log_2 x}}$$
 (b) $\sqrt{2+\sqrt{4+\log_2 x}}$ (c) $\sqrt{4+\sqrt{2+\log_2 x}}$ (d) $\sqrt{4-\sqrt{2+\log_2 x}}$

- **16.** The set 'A' equals to
 - (a) [5, 2]

- (b) [-2, 5] (c) [-5, 2] (d) [-5, -2]

1	1							A	nsv	ver	3								1
1.	(c)	2.	(d)	3.	(c)	4.	(d)	5.	(a)	6.	(b)	7.	(b)	8.	(a)	9.	(b)	10.	(c)
	(b)	2000	1 1	this cal				15.			-		8						

Exercise-4: Matching Type Problems



(where {·} and [·] denotes the fractional and integral parts respectively), then match the following:

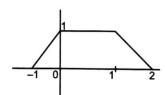
	Column-I		Column-II	
(A)	$\{x\} + \{y\} =$	(P)	7.7	
(B)	[z] + [x] =	(Q)	1.1	
(C)	$x + \{z\} =$	(R)	1	
(D)	$z + [y] - \{x\} =$	(S)	3	
		(T)	4	

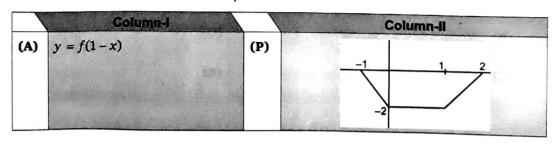
2. Consider $ax^4 + (7a - 2b)x^3 + (12a - 14b - c)x^2 - (24b + 7c)x + 1 - 12c = 0$, has no real roots and $f_1(x) = \frac{\sqrt{\log_{(\pi+e)}(ax^4 + (7a - 2b)x^3 + (12a - 14b - c)x^2 - (24b + 7c)x + 1 - 12c)}}{\sqrt{a}\sqrt{-\operatorname{sgn}(1 + ac + b^2)}}$

 $f_2(x) = -2 + 2\log_{\sqrt{2}}\cos\left(\tan^{-1}\left(\sin\left(\pi(\cos(\pi(x+\frac{7}{2}))\right)\right)\right)$. Then match the following:

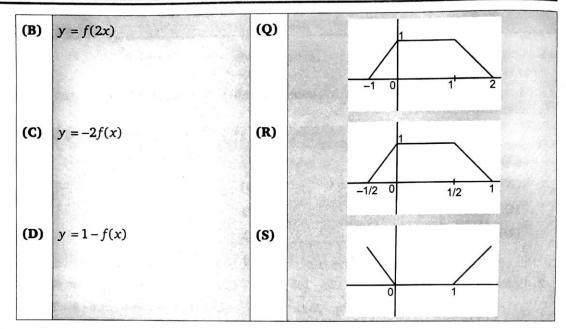
	Column-l		Column-II
(A)	Domain of $f_1(x)$ is	(P)	[-3, -2]
(B)	Range of $f_2(x)$ in the domain of $f_1(x)$ is	(Q)	[-4, -2]
(C)	Range of $f_2(x)$ is	(R)	$(-\infty,\infty)$
(D)	Domain of $f_2(x)$ is	(S)	$(-\infty, -4] \cup [-3, \infty)$
		(T)	[0, 1]

3. Given the graph of y = f(x)





Advanced Problems in Mathematics for JEE



4.

24

-	Column-l		Column-II
(A)	$f(x) = \sin^2 2x - 2\sin^2 x$	(P)	Range contains no natural number
(B)	$f(x) = \frac{4}{\pi} (\sin^{-1} (\sin \pi x))$	(Q)	Range contains atleast one integer
(C)	$f(x) = \sqrt{\ln(\cos(\sin x))}$	(R)	Many one but not even function
(D)	$f(x) = \tan^{-1}\left(\frac{x^2 + 1}{x^2 + \sqrt{3}}\right)$	(S)	Both many one and even function
		(T)	Periodic but not odd function

5.

	Column-l		Column-li
(A)	If $ x^2 - x \ge x^2 + x$, then complete set of values of x is	(P)	(0,∞)
(B)	If $ x+y > x-y$, where $x > 0$, then complete set of values of y is	(Q)	(-∞, 0]
(C)	If $\log_2 x \ge \log_2(x^2)$, then complete set of values of x is	(R)	[−1,∞)

Function 25

(D)	$[x] + 2 \ge x $, (where [·] denotes the greatest integer function) then complete set of	(S)	(0,1]
1.	values of x is		
		(T)_	[1,∞)

6.

	Column-l	V	Column-II
(A)	Domain of $f(x) = \ln \tan^{-1} \{(x^3 - 6x^2 + 11x - 6)x(e^x - 1)\}$ is	(P)	$\left[-1,\frac{5}{4}\right]$
(B)	Range of $f(x) = \sin^2 \frac{x}{4} + \cos \frac{x}{4}$ is	(Q)	$[2,\infty)$
(C)	The domain of function $f(x) = \sqrt{\log_{(x -1)}(x^2 + 4x + 4)}$ is	(R)	$(1,2)\cup(3,\infty)$
(D)	Let $f(x) = \begin{cases} x^2 & x < 1 \\ x + 1 & x \ge 1 \end{cases}$; $g(x) = \begin{cases} x + 2 & x < 1 \\ x^2 & x \ge 1 \end{cases}$	(S)	[0,∞)
	Then range of function $f(g(x))$ is	(T)	$(-\infty,-3)\cup(-2,-1)\cup(2,\infty)$

7. Let $f(x) \begin{bmatrix} 1+x; & 0 \le x \le 2 \\ 3-x; & 2 < x \le 3 \end{bmatrix}$;

g(x) = f(f(x)):

-	Column-I	Part of the same o	Column-II
(A)	If domain of $g(x)$ is $[a, b]$ then $b-a$ is	(P)	1
(B)	If range of $g(x)$ is $[c, d]$ then $c + d$ is	(Q)	2
(C)	f(f(f(2))) + f(f(f(3))), is	(R)	3
(D)	m = maximum value of g(x) then 2m - 2 is :	(S)	4

Answers

- 1. $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow Q$
- **2.** $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$
- 3. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$
- 4. $A \rightarrow P$, Q, S, T; $B \rightarrow Q$, R; $C \rightarrow P$, Q, S; $D \rightarrow P$, S
- **5.** $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow R$
- 6. $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow S$
- 7. $A \rightarrow R$; $B \rightarrow R$; $C \rightarrow R$; $D \rightarrow S$

Exercise-5 : Subjective Type Problems

1. Let f(x) be a polynomial of degree 6 with leading coefficient 2009. Suppose further, that f(1) = 1, f(2) = 3, f(3) = 5, f(4) = 7, f(5) = 9, f'(2) = 2, then the sum of all the digits of f(6) is

www.jeebooks.in

- **2.** Let $f(x) = x^3 3x + 1$. Find the number of different real solution of the equation f(f(x)) = 0.
- 3. If $f(x+y+1) = (\sqrt{f(x)} + \sqrt{f(y)})^2 \ \forall \ x, y \in R \text{ and } f(0) = 1, \text{ then } f(2) = \dots$
- **4.** If the domain of $f(x) = \sqrt{12 3^x 3^{3-x}} + \sin^{-1}\left(\frac{2x}{3}\right)$ is [a, b], then $a = \dots$
- 5. The number of elements in the range of the function : $y = \sin^{-1} \left[x^2 + \frac{5}{9} \right] + \cos^{-1} \left[x^2 \frac{4}{9} \right]$ where [·] denotes the greatest integer function is
- **6.** The number of solutions of the equation $f(x-1)+f(x+1)=\sin\alpha$, $0<\alpha<\frac{\pi}{2}$, where $f(x)=\begin{cases} 1-|x| & , & |x|\leq 1\\ 0 & , & |x|>1 \end{cases}$ is
- 7. The number of integers in the range of function $f(x) = [\sin x] + [\cos x] + [\sin x + \cos x]$ is (where $[\cdot]$ = denotes greatest integer function)
- **8.** If P(x) is a polynomial of degree 4 such that P(-1) = P(1) = 5 and P(-2) = P(0) = P(2) = 2, then find the maximum value of P(x).
- **9.** The number of integral value(s) of k for which the curve $y = \sqrt{-x^2 2x}$ and x + y k = 0 intersect at 2 distinct points is/are
- 10. Let the solution set of the equation:

$$\sqrt{\left[x + \left[\frac{x}{2}\right]\right]} + \left[\sqrt{\left\{x\right\}} + \left[\frac{x}{3}\right]\right] = 3$$

is [a, b). Find the product ab.

(where $[\cdot]$ and $\{\cdot\}$ denote greatest integer and fractional part function respectively).

11. For all real number x, let $f(x) = \frac{1}{201\sqrt[3]{1-x^{2011}}}$. Find the number of real roots of the equation

$$f(f(\ldots,(f(x))\ldots) = \{-x\}$$

where f is applied 2013 times and $\{\cdot\}$ denotes fractional part function.

- **12.** Find the number of elements contained in the range of the function $f(x) = \left[\frac{x}{6}\right] \left[\frac{-6}{x}\right] \forall x \in (0,30]$ (where [·] denotes greatest integer function)
- **13.** Let $f(x, y) = x^2 y^2$ and g(x, y) = 2xy.

such that
$$(f(x,y))^2 - (g(x,y))^2 = \frac{1}{2}$$
 and $f(x,y) \cdot g(x,y) = \frac{\sqrt{3}}{4}$

Find the number of ordered pairs (x, y)?

14. Let $f(x) = \frac{x+5}{\sqrt{x^2+1}} \ \forall \ x \in R$, then the smallest integral value of k for which $f(x) \le k \ \forall \ x \in R$ is

15. In the above problem, f(x) is injective in the interval $x \in (-\infty, a]$, and λ is the largest possible value of a, then $[\lambda] =$

(where [x] denote greatest integer $\leq x$)

- **16.** The number of integral values of m for which $f: R \to R$; $f(x) = \frac{x^3}{3} + (m-1)x^2 + (m+5)x + n$ is bijective is :
- 17. The number of roots of equation :

$$\left(\frac{(x-1)(x-3)}{(x-2)(x-4)} - e^x\right) \left(\frac{(x+1)(x+3)e^x}{(x+2)(x+4)} - 1\right) (x^3 - \cos x) = 0$$

- **18.** The number of solutions of the equation $\cos^{-1}\left(\frac{1-x^2-2x}{(x+1)^2}\right) = \pi(1-\{x\})$, for $x \in [0,76]$ is equal to. (where $\{\cdot\}$ denote fraction part function)
- **19.** Let $f(x) = x^2 bx + c$, b is an odd positive integer. Given that f(x) = 0 has two prime numbers as roots and b + c = 35. If the least value of $f(x) \forall x \in R$ is λ , then $\left[\left| \frac{\lambda}{3} \right| \right]$ is equal to
- (where [·] denotes greatest integer function)

 20. Let f(x) be continuous function such that f(0) = 1 and $f(x) f\left(\frac{x}{7}\right) = \frac{x}{7} \forall x \in R$, then f(42) = 1
- **21.** If $f(x) = 4x^3 x^2 2x + 1$ and $g(x) = \begin{cases} \min\{f(t): 0 \le t \le x\} &; 0 \le x \le 1 \\ 3 x &; 1 < x \le 2 \end{cases}$ and if $\lambda = g\left(\frac{1}{4}\right) + g\left(\frac{3}{4}\right) + g\left(\frac{5}{4}\right)$, then $2\lambda = \frac{1}{4} + \frac{1}{4} +$
- **22.** If $x = 10 \sum_{r=3}^{100} \frac{1}{(r^2 4)}$, then [x] =

(where [.] denotes greatest integer function)

- **23.** Let $f(x) = \frac{ax + b}{cx + d}$, where a, b, c, d are non zero. If f(7) = 7, f(11) = 11 and f(f(x)) = x for all x except $-\frac{d}{c}$. The unique number which is not in the range of f is
- **24.** Let $A = \{x \mid x^2 4x + 3 < 0, x \in R\}$ $B = \{x \mid 2^{1-x} + p \le 0; x^2 - 2(p+7)x + 5 \le 0\}$

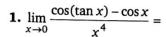
If $A \subseteq B$, then the range of real number $p \in [a, b]$ where a, b are integers. Find the value of (b - a).

- **25.** Let the maximum value of expression $y = \frac{x^4 x^2}{x^6 + 2x^3 1}$ for x > 1 is $\frac{p}{q}$, where p and q are relatively prime natural numbers, then p + q =
- **26.** If f(x) is an even function, then the number of distinct real numbers x such that $f(x) = f\left(\frac{x+1}{x+2}\right)$ is :
- **27.** The least integral value of $m, m \in R$ for which the range of function $f(x) = \frac{x+m}{x^2+1}$ contains the interval [0,1] is :
- **28.** Let x_1, x_2, x_3 satisfying the equation $x^3 x^2 + \beta x + \gamma = 0$ are in G.P. where x_1, x_2, x_3 are positive numbers. Then the maximum value of $[\beta] + [\gamma] + 4$ is where $[\cdot]$ denotes greatest integer function is:
- **29.** Let $A = \{1, 2, 3, 4\}$ and $B = \{0, 1, 2, 3, 4, 5\}$. If 'm' is the number of strictly increasing function f, $f: A \to B$ and n is the number of onto functions $g, g: B \to A$. Then the last digit of n m is.
- **30.** If $\sum_{r=1}^{n} [\log_2 r] = 2010$, where [·] denotes greatest integer function, then the sum of the digits of n is :
- **31.** Let $f(x) = \frac{ax+b}{cx+d}$, where a, b, c, d are non-zero. If f(7) = 7, f(11) = 11 and f(f(x)) = x for all x except $-\frac{d}{c}$. The unique number which is not in the range of f is
- **32.** It is pouring down rain, and the amount of rain hitting point (x, y) is given by $f(x, y) = |x^3 + 2x^2y 5xy^2 6y^3|$. If Mr. 'A' starts at (0, 0); find number of possible value(s) for 'm' such that y = mx is a line along which Mr. 'A' could walk without any rain falling on him.
- **33.** Let P(x) be a cubic polynomical with leading co-efficient unity. Let the remainder when P(x) is divided by $x^2 5x + 6$ equals 2 times the remainder when P(x) is divided by $x^2 5x + 4$. If P(0) = 100, find the sum of the digits of P(5):
- **34.** Let $f(x) = x^2 + 10x + 20$. Find the number of real solution of the equation f(f(f(f(x)))) = 0
- **35.** If range of $f(x) = \frac{(\ln x)(\ln x^2) + \ln x^3 + 3}{\ln^2 x + \ln x^2 + 2}$ can be expressed as $\left[\frac{a}{b}, \frac{c}{d}\right]$ where a, b, c and d are prime numbers (not necessarily distinct) then find the value of $\frac{(a+b+c+d)}{2}$.
- **36.** Polynomial P(x) contains only terms of odd degree. When P(x) is divided by (x-3), then remainder is 6. If P(x) is divided by (x^2-9) then remainder is g(x). Find the value of g(2).
- **37.** The equation $2x^3 3x^2 + p = 0$ has three real roots. Then find the minimum value of p.
- **38.** Find the number of integers in the domain of $f(x) = \frac{1}{\sqrt{\ln \cos^{-1} x}}$.

	1					Ansv	vers	•			1364		
1.	26	2.	7	3.	9	4.	1	5.	1	6.	4	7.	5
8.	6	9.	1	10.	12	11.	1	12.	6	13.	4	14.	6
15.	0	16.	6	17.	7	18.	76	19.	6	20.	8	21.	
22.	5	23.	9	24.	3	25.	7	26.	4	27.	1	28.	3
29.	5	30.	8	31.	9	32.	3	33.	2	34.	2	35.	6
						4.10	(5)						

Chapter 2 - Limit

Exercise-1: Single Choice Problems



(a)
$$\frac{1}{6}$$

(b)
$$-\frac{1}{3}$$

(c)
$$-\frac{1}{6}$$

(d)
$$\frac{1}{3}$$

2. The value of $\lim_{x\to 0} \frac{(\sin x - \tan x)^2 - (1 - \cos 2x)^4 + x^5}{7(\tan^{-1} x)^7 + (\sin^{-1} x)^6 + 3\sin^5 x}$ equal to :

(d)
$$\frac{1}{3}$$

3. Let $a = \lim_{x \to 0} \frac{\ln(\cos 2x)}{3x^2}$, $b = \lim_{x \to 0} \frac{\sin^2 2x}{x(1 - e^x)}$, $c = \lim_{x \to 1} \frac{\sqrt{x} - x}{\ln x}$.

Then a, b, c satisfy:

(a)
$$a < b < a$$

(b)
$$b < c < c$$

(c)
$$a < c < b$$

(d)
$$b < a < c$$

(a) a < b < c (b) b < c < a (c) a < c < b (d) b < a < c **4.** If $f(x) = \cot^{-1}\left(\frac{3x - x^3}{1 - 3x^2}\right)$ and $g(x) = \cos^{-1}\left(\frac{1 - x^2}{1 + x^2}\right)$, then $\lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$, $0 < a < \frac{1}{2}$ is:

(a) $\frac{3}{2(1 + a^2)}$ (b) $\frac{3}{2}$ (c) $\frac{-3}{2(1 + a^2)}$ (d) $-\frac{3}{2}$

(a)
$$\frac{3}{2(1+a^2)}$$

(b)
$$\frac{3}{2}$$

(c)
$$\frac{-3}{2(1+a^2)}$$

(d)
$$-\frac{3}{2}$$

5. $\lim_{x \to 0} \left(\frac{(1+x)^{\frac{2}{x}}}{e^2} \right)^{\frac{4}{\sin x}}$ is:

(b)
$$e^{-4}$$

6. $\lim_{x \to \infty} \frac{3}{x} \left[\frac{x}{4} \right] = \frac{p}{q}$ (where [·] denotes greatest integer function), then p + q (where p, q are relative prime) is:

- (a) 2
- (b) 7
- (c) 5
- (d) 6

31 Limit

7. $f(x) = \lim_{n \to \infty} \frac{x^n + \left(\frac{\pi}{3}\right)^n}{x^{n-1} + \left(\frac{\pi}{3}\right)^{n-1}}$, (*n* is an even integer), then which of the following is incorrect?

- (a) If $f: \left[\frac{\pi}{3}, \infty\right] \to \left[\frac{\pi}{3}, \infty\right]$, then function is invertible
- (b) f(x) = f(-x) has infinite number of solutions
- (c) f(x) = |f(x)| has infinite number of solutions
- (d) f(x) is one-one function for all $x \in R$

8. $\lim_{x\to 0} \frac{\sin(\pi\cos^2(\tan(\sin x)))}{x^2} =$

(c) $\frac{\pi}{2}$

(d) none of these

9. If $f(x) = \begin{cases} \frac{(e^{(x+3)\ln 27})^{\frac{x}{27}} - 9}{3^x - 27} & ; x < 3 \\ \lambda \frac{1 - \cos(x - 3)}{(x - 3)\tan(x - 3)} & ; x > 3 \end{cases}$

If $\lim_{x \to 3} f(x)$ exist, then $\lambda =$ (a) $\frac{9}{2}$ (b) $\frac{2}{9}$

(c) $\frac{2}{3}$

(d) none of these

10. $\lim_{x \to \frac{\pi}{2}} \frac{\sin\left(\frac{\pi}{3} - x\right)}{2\cos x - 1}$ is equal to :

(a) $\frac{2}{\sqrt{3}}$ (b) $\frac{1}{\sqrt{3}}$

11. $\lim_{x \to \frac{\pi}{2}} \frac{\sin x}{\cos^{-1} \left[\frac{1}{4} (3 \sin x - \sin 3x) \right]}$, (where [] denotes greatest integer function) is:

(c) $\frac{4}{\pi}$

(d) does not exist

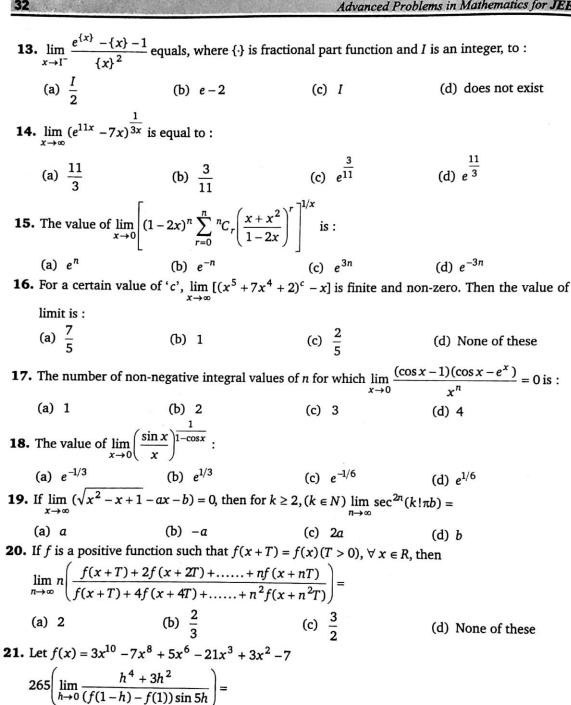
12. Let f be a continuous function on R such that $f\left(\frac{1}{4^n}\right) = (\sin e^n) e^{-n^2} + \frac{n^2}{n^2 + 1}$, then f(0) =

(a) 1

(b) 0

(c) -1

(a) 1



(c) 3

(d) -3

22.
$$\lim_{x \to 0} \left(\frac{\cos x - \sec x}{x^2(x+1)} \right) =$$

- (a) (
- (b) $-\frac{1}{2}$
- (c) -1
- (d) -2
- **23.** Let f(x) be a continuous and differentiable function satisfying $f(x+y) = f(x)f(y) \forall x, y \in R$ if f(x) can be expressed as $f(x) = 1 + xP(x) + x^2Q(x)$ where $\lim_{x\to 0} P(x) = a$ and $\lim_{x\to 0} Q(x) = b$, then

f'(x) is equal to:

(a) a f(x)

(b) bf(x)

(c) (a+b) f(x)

(d) (a + 2b) f(x)

24.
$$\lim_{x \to \frac{\pi}{2}} \frac{\left(1 - \tan \frac{x}{2}\right)(1 - \sin x)}{\left(1 + \tan \frac{x}{2}\right)(\pi - 2x)^3} =$$

- (a) not exist
- (b) $\frac{1}{8}$
- (c) $\frac{1}{16}$
- (d) $\frac{1}{32}$

- **25.** $\lim_{x\to\infty} \left(\frac{x-3}{x+2}\right)^x$ is equal to:
 - (a) e
- (b) e^{-1}
- (c) e^{-5}
- (d) e

- **26.** $\lim_{x \to \frac{\pi}{2}} (\cos x)^{\cos x}$ is:
 - (a) 1
- (b) 0
- (c) $\frac{1}{a}$
- (d) $\frac{2}{a}$
- **27.** If $\lim_{x\to c^-} \{\ln x\}$ and $\lim_{x\to c^+} \{\ln x\}$ exists finitely but they are not equal (where $\{\cdot\}$ denotes fractional part function), then:
 - (a) 'c' can take only rational values
 - (b) 'c' can take only irrational values
 - (c) 'c' can take infinite values in which only one is irrational
 - (d) 'c' can take infinite values in which only one is rational
- **28.** $\lim_{x\to 0} \left(1 + \frac{a\sin bx}{\cos x}\right)^{\frac{1}{x}}$, where a, b are non-zero constants is equal to:
 - (a) $e^{a/b}$

(b) ab

(c) e ab

(d) $e^{b/a}$

29. The value of
$$\lim_{x\to 0} \left((\cos x)^{\frac{1}{\sin^2 x}} + \frac{\sin 2x + 2\tan^{-1} 3x + 3x^2}{\ln (1 + 3x + \sin^2 x) + xe^x} \right)$$
 is:

(a)
$$\sqrt{e} + \frac{3}{2}$$

(b)
$$\frac{1}{\sqrt{e}} + \frac{3}{2}$$

(c)
$$\sqrt{e} + 2$$

(a)
$$\sqrt{e} + \frac{3}{2}$$
 (b) $\frac{1}{\sqrt{e}} + \frac{3}{2}$ (c) $\sqrt{e} + 2$ (d) $\frac{1}{\sqrt{e}} + 2$

30. Let
$$a = \lim_{x \to 1} \left(\frac{x}{\ln x} - \frac{1}{x \ln x} \right)$$
; $b = \lim_{x \to 0} \frac{x^3 - 16x}{4x + x^2}$; $c = \lim_{x \to 0} \frac{\ln(1 + \sin x)}{x}$ and

$$d = \lim_{x \to -1} \frac{(x+1)^3}{3[\sin(x+1) - (x+1)]}$$
, then the matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is:

(a) Idempotent

(c) Non-singular

(d) Nilpotent

31. The integral value of *n* so that
$$\lim_{x\to 0} f(x)$$
 where $f(x) = \frac{(\sin x - x)\left(2\sin x - \ln\left(\frac{1+x}{1-x}\right)\right)}{x^n}$ is a finite

non-zero number, is:

(a) 2

(d) 8

32. Consider the function
$$f(x) = \begin{cases} \frac{\max(x, \frac{1}{x})}{\min(x, \frac{1}{x})}, & \text{if } x \neq 0 \\ 1, & \text{then } \lim_{x \to 0^{-}} \{f(x)\} + \lim_{x \to 1^{-}} \{f(x)\} + \lim_{x \to 1^{-$$

$$\lim_{x\to -1^-} [f(x)] =$$

(where {·} denotes fraction part function and [·] denotes greatest integer function)

33.
$$\lim_{x \to \left(\frac{1}{\sqrt{2}}\right)^{+}} \frac{\cos^{-1}(2x\sqrt{1-x^{2}})}{\left(x-\frac{1}{\sqrt{2}}\right)} - \lim_{x \to \left(\frac{1}{\sqrt{2}}\right)^{-}} \frac{\cos^{-1}(2x\sqrt{1-x^{2}})}{\left(x-\frac{1}{\sqrt{2}}\right)} =$$

(a)
$$\sqrt{2}$$

(b)
$$2\sqrt{2}$$

(c)
$$4\sqrt{2}$$

(d) 0

(a)
$$\sqrt{2}$$
 (b) $2\sqrt{2}$ (c) $4\sqrt{2}$
34. $\lim_{n \to \infty} \sum_{k=1}^{n} \left(\sin \frac{\pi}{2k} - \cos \frac{\pi}{2k} - \sin \left(\frac{\pi}{2(k+2)} \right) + \cos \frac{\pi}{2(k+2)} \right) =$

(a) 0

(b) 1

(c) 2

(d) 3

35.
$$\lim_{x\to 0^+} [1+[x]]^{2/x}$$
, where [·] is greatest integer function, is equal to :

(a) 0

(b) 1

(c) e^2

(d) Does not exist

36. If m and n are positive integers, then $\lim_{x\to 0} \frac{(\cos x)^{1/m} - (\cos x)^{1/n}}{x^2}$ equals to:

(a)
$$m-n$$

(b)
$$\frac{1}{n} - \frac{1}{m}$$

(c)
$$\frac{m-n}{2mn}$$

37. The value of ordered pair (a, b) such that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}=1$, is:

(a)
$$\left(-\frac{5}{2}, -\frac{3}{2}\right)$$
 (b) $\left(\frac{5}{2}, \frac{3}{2}\right)$ (c) $\left(-\frac{5}{2}, \frac{3}{2}\right)$ (d) $\left(\frac{5}{2}, -\frac{3}{2}\right)$

(b)
$$\left(\frac{5}{2}, \frac{3}{2}\right)$$

(c)
$$\left(-\frac{5}{2}, \frac{3}{2}\right)$$

(d)
$$\left(\frac{5}{2}, -\frac{3}{2}\right)$$

38. What is the value of a + b, if $\lim_{x \to 0} \frac{\sin(ax) - \ln(e^x \cos x)}{x \sin(bx)} = \frac{1}{2}$?

(d)
$$-\frac{1}{2}$$

39. Let $\alpha = \lim_{n \to \infty} \frac{(1^3 - 1^2) + (2^3 - 2^2) + ... + (n^3 - n^2)}{n^4}$, then α is equal to :

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{1}{2}$$

(d) non existent

40. The value of $\lim_{x\to 0} \frac{\cos(\sin x) - \cos x}{x^4}$ is equal to :

(a)
$$\frac{1}{5}$$

(b)
$$\frac{1}{6}$$
 (c) $\frac{1}{4}$

(c)
$$\frac{1}{2}$$

(d)
$$\frac{1}{12}$$

41. The value of ordered pair (a, b) such that $\lim_{x\to 0} \frac{x(1+a\cos x)-b\sin x}{x^3}=1$, is

(a)
$$\left(-\frac{5}{2}, -\frac{3}{2}\right)$$

(b)
$$\left(\frac{5}{2}, \frac{3}{2}\right)$$

(c)
$$\left(-\frac{5}{2}, \frac{3}{2}\right)$$

(a)
$$\left(-\frac{5}{2}, -\frac{3}{2}\right)$$
 (b) $\left(\frac{5}{2}, \frac{3}{2}\right)$ (c) $\left(-\frac{5}{2}, \frac{3}{2}\right)$ (d) $\left(\frac{5}{2}, -\frac{3}{2}\right)$

42. Consider the sequence :

$$u_n = \sum_{r=1}^n \frac{r}{2^r}, \quad n \ge 1$$

Then the limit of u_n as $n \to \infty$ is:

(c)
$$\frac{1}{2}$$

43. The value of $\lim_{x\to 0} \left((\cos x)^{\frac{1}{\sin^2 x}} + \frac{\sin 2x + 2\tan^{-1} 3x + 3x^2}{\ln (1 + 3x + \sin^2 x) + xe^x} \right)$ is:

(a)
$$\sqrt{e} + \frac{3}{2}$$

(a)
$$\sqrt{e} + \frac{3}{2}$$
 (b) $\frac{1}{\sqrt{e}} + \frac{3}{2}$ (c) $\sqrt{e} + 2$ (d) $\frac{1}{\sqrt{e}} + 2$

(c)
$$\sqrt{e} + 2$$

(d)
$$\frac{1}{\sqrt{e}} + 2$$

(c) 2

(d) e^2

Limit 37

52. If $x_1, x_2, x_3, \dots, x_n$ are the roots of $x^n + ax + b = 0$, then the value of $(x_1 - x_2)(x_1 - x_3)$

 $(x_1 - x_4) \dots (x_1 - x_n)$ is equal to:

(a) $nx_1 + b$ (b) $nx_1^{n-1} + a$

(c) nx_1^{n-1}

(d) nx_1^{n-1}

53. $\lim_{x\to 0} \frac{\sqrt[3]{1+\sin^2 x} - \sqrt[4]{1-2\tan x}}{\sin x + \tan^2 x}$ is equal to :

(a) -1

(b) 1

(c) $\frac{1}{2}$

(d) $-\frac{1}{2}$

54. If $f(x) = \begin{vmatrix} x \cos x & 2x \sin x & x \tan x \\ 1 & x & 1 \\ 1 & 2x & 1 \end{vmatrix}$, find $\lim_{x \to 0} \frac{f(x)}{x^2}$.

(a) 0

(b) 1

(c) -1

(d) Does not exist

	/							A	nsv	ver	3	48		. 44					7
1,	(b)	2.	(d)	3.	(d)	4.	(d)	5.	(b)	6.	(b)	7.	(d)	8.	(a)	9.	(c)	10.	(b)
11.	(a)	12.	(a)	13.	(b)	14.	(d)	15.	(b)	16.	(a)	17.	(c)	18.	(a)	19.	(a)	20.	(c)
21.	(c)	22.	(c)	23.	(a)	24.	(d)	25.	(c)	26.	(a)	27.	(d)	28.	(c)	29.	(d)	30.	(d)
31.	(c)	32.	(a)	33.	(c)	34.	(d)	35.	(b)	36.	(c)	37.	(a)	38.	(b)	39.	(b)	40.	(b)
41.	(a)	42.	(d)	43.	(d)	44.	(c)	45.	(b)	46.	(d)	47.	(a)	48.	(c)	49.	(a)	50.	(c)
51.	(a)	52.	(ъ)	53.	(c)	54.	(c)												

Exercise-2: One or More than One Answer is/are Correct

1. If $\lim_{x\to 0} (p \tan qx^2 - 3\cos^2 x + 4)^{1/(3x^2)} = e^{5/3}$; $p, q \in R$ then:

(a)
$$p = \sqrt{2}$$
, $q = \frac{1}{2\sqrt{2}}$ (b) $p = \frac{1}{\sqrt{2}}$, $q = 2\sqrt{2}$ (c) $p = 1$, $q = 2$

2.
$$\lim_{x \to \infty} 2(\sqrt{25x^2 + x} - 5x)$$
 is equal to :

(a)
$$\lim_{x\to 0} \frac{2x - \log_e (1+x)^2}{5x^2}$$

(b)
$$\lim_{x\to 0} \frac{e^{-x}-1+x}{x^2}$$

(c)
$$\lim_{x\to 0} \frac{2(1-\cos x^2)}{5x^4}$$

(d)
$$\lim_{x\to 0} \frac{\sin\frac{x}{5}}{x}$$

3. Let
$$\lim_{x \to \infty} (2^x + a^x + e^x)^{1/x} = L$$

which of the following statement(s) is(are) correct?

(a) if
$$L = a (a > 0)$$
, then the range of a is $[e, \infty)$

(b) if
$$L = 2e(a > 0)$$
, then the range of a is $\{2e\}$

(c) if
$$L = e(a > 0)$$
, then the range of a is $(0, e]$

(d) if
$$L = 2a (a > 1)$$
, then the range of a is $\left(\frac{e}{2}, \infty\right)$

4. Let $\tan \alpha \cdot x + \sin \alpha \cdot y = \alpha$ and $\alpha \csc \alpha \cdot x + \cos \alpha \cdot y = 1$ be two variable straight lines, α being the parameter. Let P be the point of intersection of the lines. In the limiting position when $\alpha \rightarrow 0$, the point *P* lies on the line :

(a)
$$x = 2$$

(b)
$$x = -1$$

(c)
$$y + 1 = 0$$

(d)
$$y = 2$$

5. Let $f: R \to [-1, 1]$ be defined as $f(x) = \cos(\sin x)$, then which of the following is (are) correct?

(a)
$$f$$
 is periodic with fundamental period 2π (b) Range of $f = [\cos 1, 1]$

(b) Range of
$$f = [\cos 1, 1]$$

(c)
$$\lim_{x \to \frac{\pi}{2}} \left(f\left(\frac{\pi}{2} - x\right) + f\left(\frac{\pi}{2} + x\right) \right) = 2$$

(d) f is neither even nor odd function

6. Let $f(x) = x + \sqrt{x^2 + 2x}$ and $g(x) = \sqrt{x^2 + 2x} - x$, then:

(a)
$$\lim_{x\to\infty} g(x) = 1$$
 (b) $\lim_{x\to\infty} f(x) = 1$

(b)
$$\lim f(x) = 1$$

(c)
$$\lim_{x \to -\infty} f(x) = -1$$
 (d) $\lim_{x \to \infty} g(x) = -1$

(d)
$$\lim_{x\to\infty} g(x) = -1$$

7. Which of the following limits does not exist?

(a)
$$\lim_{x \to \infty} \csc^{-1} \left(\frac{x}{x+7} \right)$$

(b)
$$\lim_{x\to 1} \sec^{-1} (\sin^{-1} x)$$

(c)
$$\lim_{x\to 0^+} x^{\frac{1}{x}}$$

(d)
$$\lim_{x\to 0} \left(\tan \left(\frac{\pi}{8} + x \right) \right)^{\cot x}$$

8. If $f(x) = \lim_{n \to \infty} x \left(\frac{3}{2} + [\cos x] \left(\sqrt{n^2 + 1} - \sqrt{n^2 - 3n + 1} \right) \right)$ where [y] denotes largest integer $\leq y$, then identify the correct statement(s).

(a)
$$\lim_{x\to 0} f(x) = 0$$

(b)
$$\lim_{x \to \frac{\pi}{2}} f(x) = \frac{3\pi}{4}$$

(c)
$$f(x) = \frac{3x}{2} \forall x \in \left[0, \frac{\pi}{2}\right]$$

(d)
$$f(x) = 0 \forall x \in \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$$

9. Let
$$f: R \to R$$
; $f(x) = \begin{cases} (-1)^n & \text{if } x = \frac{1}{2^{2^n}}, n = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$

then identify the correct statement(s).

(a)
$$\lim_{x\to 0} f(x) = 0$$

(b)
$$\lim_{x\to 0} f(x)$$
 does not exist

(c)
$$\lim_{x\to 0} f(x) f(2x) = 0$$

(d)
$$\lim_{x\to 0} f(x) f(2x)$$
 does not exist

10. If $\lim_{x \to a} f(x) = \lim_{x \to a} [f(x)]$ ([] denotes the greatest integer function) and f(x) is non-constant continuous function, then:

(a)
$$\lim_{x\to a} f(x)$$
 is an integer

(b)
$$\lim_{x\to a} f(x)$$
 is non-integer

(c)
$$f(x)$$
 has local maximum at $x = a$

(d)
$$f(x)$$
 has local minimum at $x = a$

11. Let $f(x) = \frac{\cos^{-1}(1 - \{x\})\sin^{-1}(1 - \{x\})}{\sqrt{2\{x\}}(1 - \{x\})}$ where $\{x\}$ denotes the fractional part of x, then:

(a)
$$\lim_{x\to 0^+} f(x) = \frac{\pi}{4}$$

(b)
$$\lim_{x \to 0^+} f(x) = \sqrt{2} \lim_{x \to 0^-} f(x)$$

(d) $\lim_{x \to 0^-} f(x) = \frac{\pi}{2\sqrt{2}}$

(c)
$$\lim_{x\to 0^-} f(x) = \frac{\pi}{4\sqrt{2}}$$

(d)
$$\lim_{x \to 0^{-}} f(x) = \frac{\pi}{2\sqrt{2}}$$

12. If
$$\lim_{x\to 0} \frac{(\sin(\sin x) - \sin x)}{ax^3 + bx^5 + c} = -\frac{1}{12}$$
, then:

(a)
$$a=2$$

(b)
$$a = -2$$

(c)
$$c = 0$$

13. If $f(x) = \lim_{n \to \infty} (n(x^{1/n} - 1))$ for x > 0, then which of the following is/are true?

(a)
$$f\left(\frac{1}{r}\right) = 0$$

(b)
$$f\left(\frac{1}{x}\right) = \frac{1}{f(x)}$$

(c)
$$f\left(\frac{1}{x}\right) = -f(x)$$

(d)
$$f(xy) = f(x) + f(y)$$

www.jeebooks.in

14. The value of $\lim_{n\to\infty}\cos^2\left(\pi\left(\sqrt[3]{n^3+n^2+2n}\right)\right)$ (where $n\in N$):

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{1}{4}$$

(d)
$$\frac{1}{9}$$

15. If $\alpha, \beta \in \left(-\frac{\pi}{2}, 0\right)$ such that $(\sin \alpha + \sin \beta) + \frac{\sin \alpha}{\sin \beta} = 0$ and $(\sin \alpha + \sin \beta) \frac{\sin \alpha}{\sin \beta} = -1$ and $\lambda = \lim_{n \to \infty} \frac{1 + (2\sin\alpha)^{2n}}{(2\sin\beta)^{2n}} \text{ then } :$

(a)
$$a = -\frac{\pi}{6}$$

(b)
$$\lambda = 2$$

(a)
$$a = -\frac{\pi}{6}$$
 (b) $\lambda = 2$ (c) $\alpha = -\frac{\pi}{3}$ (d) $\lambda = 1$

(d)
$$\lambda = 1$$

16. Let
$$f(x) = \begin{cases} |x-2| + a^2 - 6a + 9 & , & x < 2 \\ 5 - 2x & , & x \ge 2 \end{cases}$$

If $\lim_{x\to 2} [f(x)]$ exists, the possible values a can take is/are (where [·] represents the greatest integer function)

(b)
$$\frac{5}{2}$$

(c) 3 (d)
$$\frac{7}{2}$$

	/				Ansv	vers				10	
1.	(b, c)	2.	(a, c, d)	3.	(a, b, c)	4.	(a, c)	5.	(b, c)	6.	(a, c)
7	(a, d)	8.	(a, c, d)	9.	(b, c)	10.	(a, d)	11.	(b, d)	12.	(a, c)
99	(c, d)	36.	(c)	15.	(a, b)	16.	(b)				

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

A circular disk of unit radius is filled with a number of smaller circular disks arranged in the form of hexagon. Let A_n denotes a stack of disks arranged in the shape of a hexagon having 'n' disks on a side. The figure shows the configuration A_3 . If 'A' be the area of large disk, S_n be the number of disks in A_n configuration and r_n be the radius of each disk in A_n configuration, then

- 1. $\lim_{n\to\infty}\frac{S_n}{n^2}$:
 - (a) 3
- (b) 4
- (c) 1
- (d) 11

- **2.** $\lim_{n\to\infty} nr_n$:
 - (a) $\frac{1}{3}$
- (b) $\frac{1}{2}$
- (d) $\frac{1}{11}$

Paragraph for Question Nos. 3 to 4

Let
$$f(x) = \begin{bmatrix} x+3 & ; & -2 < x < 0 \\ 4 & ; & x=0 \\ 2x+5 & ; & 0 < x < 1 \end{bmatrix}$$
, then

- **3.** $\lim_{x \to \infty} f([x \tan x])$ is : ([·] denotes greatest integer function)
 - (a) 2
- (b) 4
- (c) 5
- (d) None of these
- **4.** $\lim_{x\to 0^+} f\left(\left\{\frac{x}{\tan x}\right\}\right)$ is : ({·} denotes fractional part of function)
 - (a) 4
- (b) 5
- (c) 7
- (d) None of these

Paragraph for Question Nos. 5 to 6

A certain function f(x) has the property that $f(3x) = \alpha f(x)$ for all positive real values of x and f(x) = 1 - |x - 2| for $1 \le x \le 3$.

- 5. $\lim_{x\to 2} (f(x))^{\operatorname{cosec}\left(\frac{\pi x}{2}\right)}$ is:
 - (a) $\frac{2}{\pi}$ (c) $e^{2/\pi}$

(d) Non-existent

6. If the total area bounded by y = f(x) and x-axis in $[1, \infty)$ converges to a finite quantity, then the range of α is:

(b)
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$

(b)
$$\left(-\frac{1}{2}, \frac{1}{2}\right)$$
 (c) $\left(-\frac{1}{3}, \frac{1}{3}\right)$ (d) $\left(-\frac{1}{4}, \frac{1}{4}\right)$

(d)
$$\left(-\frac{1}{4}, \frac{1}{4}\right)$$

Paragraph for Question Nos. 7 to 9

Consider the limit $\lim_{x\to 0} \frac{1}{x^3} \left(\frac{1}{\sqrt{1+x}} - \frac{(1+ax)}{(1+bx)} \right)$ exists, finite and has the value equal to l(where a, b are real constants), then:

(b)
$$\frac{3}{4}$$

(c)
$$\frac{1}{2}$$

(d)
$$\frac{1}{4}$$

8.
$$a + b =$$

(a)
$$\frac{3}{4}$$

(b)
$$\frac{1}{2}$$

9.
$$\left| \frac{b}{l} \right| =$$

Paragraph for Question Nos. 10 to 11

For the curve $\sin x + \sin y = 1$ lying in the first quadrant there exists a constant α for which

$$\lim_{x \to 0} x^{\alpha} \frac{d^2 y}{dx^2} = L \text{ (not zero)}$$

10. The value of α :

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{\sqrt{2}}$$

(c)
$$\frac{3}{2}$$

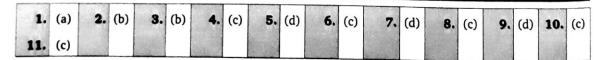
11. The value of L:

(a)
$$\frac{1}{2}$$

(c)
$$\frac{1}{2\sqrt{2}}$$

(d)
$$\frac{1}{2\sqrt{3}}$$

Answers



Limit 43

Exercise-4: Matching Type Problems

1.

	Column-I	1	Column-II
(A)	$\lim_{n\to\infty}\left(\frac{1+\sqrt[n]{4}}{2}\right)^n=$	(P)	2
(B)	Let $f(x) = \lim_{n \to \infty} \frac{2x}{n} \tan^{-1}(nx)$, then $\lim_{x \to 0^+} f(x) = \frac{1}{n}$	(Q)	0
(C)	$\lim_{x \to \frac{\pi^+}{2}} \frac{\cos(\tan^{-1}(\tan x))}{x - \frac{\pi}{2}} =$	(R)	1
(D)	If $\lim_{x\to 0^+} (x)^{\frac{1}{\ln \sin x}} = e^L$, then $L+2=$	(S)	3
		(T)	Non-existent

2. [-] represents greatest integer function :

1	Column-I		Column-II
(A)	If $f(x) = \sin^{-1} x$ and $\lim_{x \to \frac{1^+}{2}} f(3x - 4x^3) = a - 3 \lim_{x \to \frac{1^+}{2}} f(x)$, then $[a] =$	(P)	2
	If $f(x) = \tan^{-1} g(x)$ where $g(x) = \frac{3x - x^3}{1 - 3x^2}$ and then find	(Q)	3
	$\left[\lim_{h\to 0} \frac{f\left(\frac{1}{2} + 6h\right) - f\left(\frac{1}{2}\right)}{6h}\right] =$		
(C)	If $\cos^{-1}(4x^3 - 3x) = a + b\cos^{-1}x$ for $-1 < x < \frac{-1}{2}$, then $[a + b + 2] =$	(R)	4
(D)	If $f(x) = \cos^{-1}(4x^3 - 3x)$ and $\lim_{x \to \frac{1}{2}^+} f'(x) = a$ and $\lim_{x \to \frac{1}{2}^-} f'(x) = b$,	(S)	-2
	then $a + b + 3 =$		
		(T)	Non existent

Answers

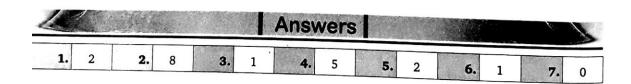
- 1. $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$
- 2. $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow Q$

Exercise-5 : Subjective Type Problems

1. If
$$\lim_{x\to 0} \frac{\ln\cot\left(\frac{\pi}{4} - \beta x\right)}{\tan\alpha x} = 1$$
, then $\frac{\alpha}{\beta} = \dots$

2. If
$$\lim_{x \to 0} \frac{f(x)}{\sin^2 x} = 8$$
, $\lim_{x \to 0} \frac{g(x)}{2\cos x - xe^x + x^3 + x - 2} = \lambda$ and $\lim_{x \to 0} (1 + 2f(x))^{\frac{1}{g(x)}} = \frac{1}{e}$, then $\lambda = \frac{1}{e}$

- 3. If α, β are two distinct real roots of the equation $ax^3 + x 1 a = 0$, $(a \ne -1, 0)$, none of which is equal to unity, then the value of $\lim_{x \to (1/\alpha)} \frac{(1+a)x^3 x^2 a}{(e^{1-\alpha x} 1)(x-1)}$ is $\frac{al(k\alpha \beta)}{\alpha}$. Find the value of kl.
- **4.** The value of $\lim_{x\to 0} \frac{(140)^x (35)^x (28)^x (20)^x + 7^x + 5^x + 4^x 1}{x\sin^2 x} = 2\ln 2\ln k \ln 7$, then $k = x\sin^2 x$
- **5.** If $\lim_{x\to 0} \frac{a \cot x}{x} + \frac{b}{x^2} = \frac{1}{3}$, then $b-a = \frac{1}{3}$
- **6.** Find the value of $\lim_{x \to \infty} \left(x + \frac{1}{x} \right) e^{1/x} x$.
- 7. Find $\lim_{x\to \alpha^+} \left[\frac{\min{(\sin{x}, \{x\})}}{x-1} \right]$ where α is root of equation $\sin{x} + 1 = x$ (here [·] represent greatest integer and {·} represent fractional part function)



Chapter 3 - Continuity, Differentiability and Differentiation

www.jeebooks.in

CONTINUITY, DIFFERENTIABILITY

				AITL					
•	Exe	rcise-1 : S	Single Choice P	roblems					1
1.			differentiable $regions, y \in R$. Then f''				ng f(x -	+2y) = f(x)) + f(2y) +
	(a) A		(b) GP		(c)			(d) None	of these
2.	The	number of	points of non-dif	ferentiability	for f(x	$(x) = \max \left\{ \right.$	$\left[x -1 \right]$	$\left(\frac{1}{2}\right)$ is:	
	(a)		(b) 3		(c)			(d) 5	
3.	Nun	nber of poir	nts of discontinui	$ty of f(x) = \begin{cases} \begin{cases} \\ \end{cases} \end{cases}$	$\left\{\frac{x}{5}\right\} + \left[\frac{x}{5}\right]$	$\left[\frac{x}{2}\right]$ in $x \in$	[0, 100] i	s/are (whe	re [·] denote
	grea	atest intege	r function and $\{\cdot\}$	denotes fract	ional p	part functi	ion)		
	(a)	50	(b) 51		(c)	52		(d) 61	
4.	If $f($	(x) has isola	ted point of disco	intinuity at $x =$					= a then:
	(a)	$\lim_{x\to a} f(x) \mathrm{d}$	oes not exist			$\lim_{x\to a} f(x)$		= 0	
		f(a) = 0			3. 15.	None of		0.000	<i>c</i> ()
5.	If f	(x) is a thri	ce differentiable	function such	that, l	$\lim_{x\to 0} \frac{f(4x)}{}$	-35(3x	$\frac{(2x)^{-3}}{x^3}$	$\frac{-f(x)}{(x)} = 12$
	the	n the value	of $f'''(0)$ equals t	o:					
	(a)	0	(b) 1		(c)			(d) None	of these
6.	ν =		$\frac{1}{\sin\theta - \cos\theta} + (\cot\theta)$	cos A cot A + -		L cos A-sin A		sin A. cot A	
		$1 + (\tan \theta)^{5}$	$\sin \theta = \cos \theta + (\cot \theta)$	1+	· (tan 0) coso saro	+ (cot θ)	smro-coro	
	+-	+ (tan θ) ^{cos}	$\frac{1}{\theta - \cot \theta} + (\cot \theta)^{\cot \theta}$	$\frac{dy}{d\theta - \sin \theta}$ then $\frac{dy}{d\theta}$	/ at θ =	$=\pi/3$ is:			
	(a)	0			(b)	1			
		$\sqrt{3}$			(d)	None of	these		
7			(x^2) and $y = f(x^2)$	$\frac{d}{dt}$ + 1) then $\frac{dy}{dt}$	$\frac{y}{x}$ at $x = \frac{y}{x}$	= 1 is :		4)	
	(a)	2 sin 2	(b) 2cc	os 2	(c)	2 sin 4		(d) cos 2	

8. If $f(x) = |\sin x - |\cos x|$, then $f'(\frac{7\pi}{6}) =$

(a)
$$\frac{\sqrt{3}+1}{2}$$

(b)
$$\frac{1-\sqrt{3}}{2}$$

(c)
$$\frac{\sqrt{3}-1}{2}$$

(d)
$$\frac{-1-\sqrt{3}}{2}$$

9. If $2\sin x \cdot \cos y = 1$, then $\frac{d^2y}{dx^2}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ is

(a) -4 (b) -2 (c) -6 (d) 0 **10.** f is a differentiable function such that $x = f(t^2)$, $y = f(t^3)$ and $f'(1) \neq 0$ if $\left(\frac{d^2y}{dx^2}\right)_{x=0}$

(a)
$$\frac{3}{4} \left(\frac{f''(1) + f'(1)}{(f'(1))^2} \right)$$

(b)
$$\frac{3}{4} \left(\frac{f'(1) \cdot f''(1) - f''(1)}{(f'(1))^2} \right)$$

(c)
$$\frac{4}{3} \frac{f''(1)}{(f'(1))^2}$$

(d)
$$\frac{4}{3} \left(\frac{f'(1)f''(1) - f''(1)}{(f'(1))^2} \right)$$

11. Let $f(x) = \begin{cases} ax + 1 & \text{if } x < 1 \\ 3 & \text{if } x = 1. \text{ If } f(x) \text{ is continuous at } x = 1 \text{ then } (a - b) \text{ is equal to } : \\ bx^2 + 1 & \text{if } x > 1 \end{cases}$

(a) 0 (b) 1 (c) 2 (d)

12. If $y = 1 + \frac{\alpha}{\left(\frac{1}{x} - \alpha\right)} + \frac{\beta/x}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)} + \frac{\gamma/x^2}{\left(\frac{1}{x} - \alpha\right)\left(\frac{1}{x} - \beta\right)\left(\frac{1}{x} - \gamma\right)}$, then $\frac{dy}{dx}$ is:

(a)
$$y\left(\frac{\alpha}{\alpha-x} + \frac{\beta}{\beta-x} + \frac{\gamma}{\gamma-x}\right)$$

(a)
$$y\left(\frac{\alpha}{\alpha-x} + \frac{\beta}{\beta-x} + \frac{\gamma}{\gamma-x}\right)$$
 (b) $\frac{y}{x}\left(\frac{\alpha}{1/x-\alpha} + \frac{\beta}{1/x-\beta} + \frac{\gamma}{1/x-\gamma}\right)$

(c)
$$y \left(\frac{\alpha}{1/x - \alpha} + \frac{\beta}{1/x - \beta} + \frac{\gamma}{1/x - \gamma} \right)$$

(c)
$$y \left(\frac{\alpha}{1/x - \alpha} + \frac{\beta}{1/x - \beta} + \frac{\gamma}{1/x - \gamma} \right)$$
 (d) $\frac{y}{x} \left(\frac{\alpha/x}{1/x - \alpha} + \frac{\beta/x}{1/x - \beta} + \frac{\gamma/x}{1/x - \gamma} \right)$

13. If $f(x) = \sqrt{\frac{1 + \sin^{-1} x}{1 - \tan^{-1} x}}$; then f'(0) is equal to:

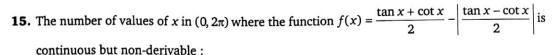
(a) 4 (b) 5 (c) 2 (d) 4 (e) 5 (e) 5 (e) 5 (f) 6 (f) 6 (f) 7 (f) 8 (f) 8 (f) 9 (f) 9

(a)
$$\left\{ (2n+1)\frac{\pi}{2}, n \in I \right\}$$

(b) a null set

(c)
$$\{n\pi, n \in I\}$$

(d) set of all rational numbers



(b) 4

(c) 0

(d) 1

16. If f(x) = |x-1| and g(x) = f(f(f(x))), then g'(x) is equal to :

(a) 1 for x > 2

(b) 1 for 2 < x < 3

(c) -1 for 2 < x < 3 (d) -1 for x > 3

17. If f(x) is a continuous function $\forall x \in R$ and the range of f(x) is $(2, \sqrt{26})$ and $g(x) = \left| \frac{f(x)}{C} \right|$ is

continuous $\forall x \in R$, then the least positive integral value of C is : (where [-] denotes the greatest integer function.)

(a) 3

(d) 7

18. If $y = x + e^x$, then $\left(\frac{d^2x}{dy^2}\right)_{x = 1, 2, 2}$ is:

19. Let $f(x) = x^3 + 4x^2 + 6x$ and g(x) be its inverse then the value of g'(-4):

(d) None of these

20. If f(x) = 2 + |x| - |x - 1| - |x + 1|, then $f'\left(-\frac{1}{2}\right) + f'\left(\frac{1}{2}\right) + f'\left(\frac{3}{2}\right) + f'\left(\frac{5}{2}\right)$ is equal to :

(a) 1

21. If $f(x) = \cos(x^2 - 4[x])$; 0 < x < 1, (where [·] denotes greatest integer function) then $f'\left(\frac{\sqrt{\pi}}{2}\right)$ is

equal to:

(a) $-\sqrt{\frac{\pi}{2}}$ (b) $\sqrt{\frac{\pi}{2}}$

22. Let g(x) be the inverse of f(x) such that $f'(x) = \frac{1}{1+x^5}$, then $\frac{d^2(g(x))}{dx^2}$ is equal to :

(a) $\frac{1}{1+(g(x))^5}$

(b) $\frac{g'(x)}{1+(g(x))^5}$

(c) $5(g(x))^4(1+(g(x))^5)$

(d) $1+(g(x))^5$

23. Let $f(x) = \begin{cases} \min(x, x^2) & x \ge 0 \\ \max(2x, x - 1) & x < 0 \end{cases}$, then which of the following is not true?

(a) f(x) is not differentiable at x = 0

(b) f(x) is not differentiable at exactly two points

- (c) f(x) is continuous everywhere
- (d) f(x) is strictly increasing $\forall x \in R$

24. If $f(x) = \lim_{n \to \infty} \left(\prod_{i=1}^n \cos \left(\frac{x}{2^i} \right) \right)$ then f'(x) is equal to:

(a)
$$\frac{\sin x}{x}$$

(b)
$$\frac{x}{\sin x}$$

(a)
$$\frac{\sin x}{x}$$
 (b) $\frac{x}{\sin x}$ (c) $\frac{x \cos x - \sin x}{x^2}$ (d) $\frac{\sin x - x \cos x}{\sin^2 x}$

(d)
$$\frac{\sin x - x \cos x}{\sin^2 x}$$

25. Let
$$f(x) = \begin{cases} \frac{1 - \tan x}{4x - \pi} & x \neq \frac{\pi}{4}; x \in \left[0, \frac{\pi}{2}\right). \\ \lambda & x = \frac{\pi}{4} \end{cases}$$

If f(x) is continuous in $\left[0, \frac{\pi}{2}\right]$ then λ is equal to:

(b)
$$\frac{1}{2}$$

(b)
$$\frac{1}{2}$$
 (c) $-\frac{1}{2}$

26. Let $f(x) = \begin{cases} e^{-\frac{1}{x^2}} \sin \frac{1}{x} & x \neq 0, \text{ then } f'(0) = 0 \\ 0 & x = 0 \end{cases}$

(d) Does not exist

27. Let f be a differentiable function satisfying $f'(x) = 2f(x) + 10 \ \forall \ x \in R$ and f(0) = 0, then the number of real roots of the equation $f(x) + 5 \sec^2 x = 0$ in $(0, 2\pi)$ is:

28. If $f(x) = \begin{cases} \frac{\sin{\{\cos x\}}}{x - \frac{\pi}{2}} & x \neq \frac{\pi}{2} \\ 1 & x = \frac{\pi}{2} \end{cases}$, where $\{k\}$ represents the fractional part of k, then:

- (a) f(x) is continuous at $x = \frac{\pi}{2}$
- (b) $\lim_{x \to \frac{\pi}{2}} f(x)$ does not exist
- (c) $\lim_{x \to \frac{\pi}{2}} f(x)$ exists, but f is not continuous at $x = \frac{\pi}{2}$

29. Let f(x) be a polynomial in x. The second derivative of $f(e^x)$ w.r.t. x is:

(a)
$$f''(e^x)e^x + f'(e^x)$$

(b)
$$f''(e^x)e^{2x} + f'(e^x)e^{2x}$$

(c)
$$f''(e^x)e^x + f'(e^x)e^{2x}$$

(d)
$$f''(e^x)e^{2x} + e^x f'(e^x)$$

Continuity, Differentiability and Differentiation

30. If $e^{f(x)} = \log_e x$ and $g(x)$ is the inverse function of $f(x)$	(x), then	g'(x) is equal to) :
--	-----------	-------------------	-----

- (a) $e^x + x$
- (b) $e^{e^{e^x}}e^{e^x}e^x$

- **31.** If y = f(x) is differentiable $\forall x \in R$, then
 - (a) y = |f(x)| is differentiable $\forall x \in R$
 - (b) $y = f^2(x)$ is non-differentiable for at least one x
 - (c) y = f(x)|f(x)| is non-differentiable for at least one x
 - (d) $y = |f(x)|^3$ is differentiable $\forall x \in R$
- **32.** If $f(x) = (x-1)^4(x-2)^3(x-3)^2$ then the value of f'''(1) + f''(2) + f'(3) is:
- (c) 2

33. If
$$f(x) = \left(\frac{x}{2}\right) - 1$$
, then on the interval $[0, \pi]$:

- (a) tan(f(x)) and $\frac{1}{f(x)}$ are both continuous
- (b) tan(f(x)) and $\frac{1}{f(x)}$ are both discontinuous
- (c) tan(f(x)) and $f^{-1}(x)$ are both continuous
- (d) $\tan f(x)$ is continuous but $f^{-1}(x)$ is not

34. Let
$$f(x) = \begin{cases} \frac{e^{\frac{1}{x-2}} - 3}{\frac{1}{3^{x-2}} + 1} & x > 2\\ \frac{b \sin{\{-x\}}}{\{-x\}} & x < 2, \text{ where } \{\cdot\} \text{ denotes fraction part function, is continuous at } x = 2,\\ c & x = 2 \end{cases}$$

then b + c =

- (a) 0
- (c) 2

35. Let
$$f(x) = \frac{e^{\tan x} - e^x + \ln(\sec x + \tan x) - x}{\tan x - x}$$
 be a continuous function at $x = 0$. The value of

f(0) equals:

- (a) $\frac{1}{2}$
- (b) $\frac{2}{3}$ (c) $\frac{3}{2}$
- (d) 2



(a) 3 (b) 6 37. If $\sqrt{x+y} + \sqrt{y-x} = 5$, then $\frac{d^2y}{dx^2} =$

38. If $f(x) = x^3 + x^4 + \log x$ and g is the inverse of f, then g'(2) is :

(c) 2

39. The number of points at which the function,

$$f(x) = \begin{cases} \min\{|x|, x^2\} \\ \min\{2x - 1, x^2\} \end{cases} \text{ if } x \in (-\infty, 1) \text{ otherwise}$$

is not differentiable is:

(a) 0

40. If f(x) is a function such that f(x) + f''(x) = 0 and $g(x) = (f(x))^2 + (f'(x))^2$ and g(3) = 8, then g(8) =

(a) 0

41. Let f is twice differentiable on R such that f(0) = 1, f'(0) = 0 and f''(0) = -1, then for $a \in R$, $\lim_{x\to\infty} \left(f\left(\frac{a}{\sqrt{x}}\right) \right)^x =$

(a) e^{-a^2} (b) $e^{-\frac{a^2}{4}}$ (c) $e^{\frac{a^2}{2}}$ (d) e^{-2a^2} **42.** Let $f_1(x) = e^x$ and $f_{n+1}(x) = e^{f_n(x)}$ for any $n \ge 1$, $n \in \mathbb{N}$. Then for any fixed n, the value of $\frac{d}{dx}f_n(x)$ equals:

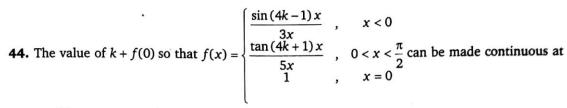
(a) $f_n(x)$

(c) $f_n(x)f_{n-1}(x)$

(d) $f_n(x)f_{n-1}(x).....f_2(x)f_1(x)e^x$

43. If $y = \tan^{-1}\left(\frac{x^{1/3} - a^{1/3}}{1 + x^{1/3}a^{1/3}}\right)$, x > 0, a > 0, then $\frac{dy}{dx}$ is:

(a) $\frac{1}{x^{2/3}(1+x^{2/3})}$ (b) $\frac{3}{x^{2/3}(1+x^{2/3})}$ (c) $\frac{1}{3x^{2/3}(1+x^{2/3})}$ (d) $\frac{1}{3x^{1/3}(1+x^{2/3})}$



x = 0 is:

- (a) 1

- (d) 0

45. If
$$y = \tan^{-1}\left(\frac{x}{1 + \sqrt{1 - x^2}}\right)$$
, $|x| \le 1$, then $\frac{dy}{dx}$ at $\left(\frac{1}{2}\right)$ is :

- (a) $\frac{1}{\sqrt{3}}$ (b) 3 (c) $\frac{\sqrt{3}}{2}$ (d) $\frac{2}{\sqrt{3}}$

46. Let
$$f(x) = \frac{e^x x \cos x - x \log_e (1+x) - x}{x^2}$$
, $x \ne 0$. If $f(x)$ is continuous at $x = 0$, then $f(0)$ is equal

to:

- (a) 0
- (b) 1
- (d) 2

47. A function $f(x) = \max(\sin x, \cos x, 1 - \cos x)$ is non-derivable for n values of $x \in [0, 2\pi]$. Then the value of n is:

- (a) 2
- (b) 1

48. Let g be the inverse function of a differentiable function f and $G(x) = \frac{1}{g(x)}$. If f(4) = 2 and $f'(4) = \frac{1}{16}$, then the value of $(G'(2))^2$ equals to :

(a) 1 (b) 4 (c) 16 (d) 64 **49.** If $f(x) = \max(x^4, x^2, \frac{1}{81}) \forall x \in [0, \infty)$, then the sum of the square of reciprocal of all the values of x where f(x) is non-differentiable, is equal to :

- (a) 1
- (c) 82

50. If f(x) is derivable at x = 2 such that f(2) = 2 and f'(2) = 4, then the value of $\lim_{h\to 0} \frac{1}{h^2} (\ln(f(2+h^2)) - \ln(f(2-h^2))) \text{ is equal to :}$

- (a) 1

- (d) 4

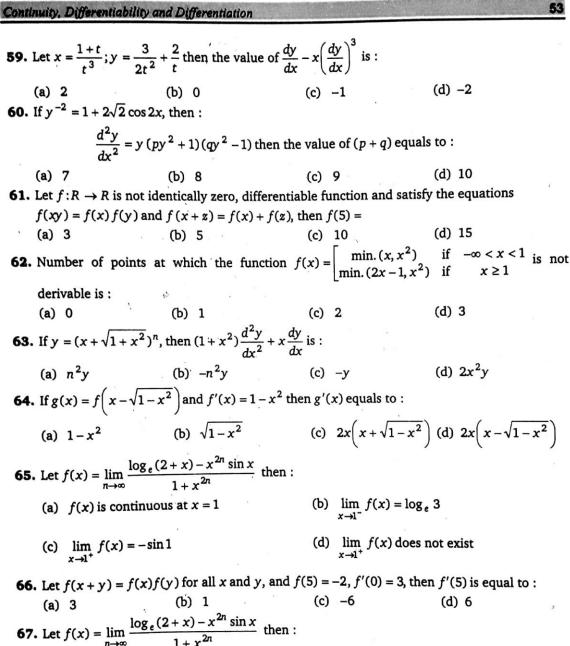
51. Let
$$f(x) = (x^2 - 3x + 2) |(x^3 - 6x^2 + 11x - 6)| + \left| \sin \left(x + \frac{\pi}{4} \right) \right|$$
.

Number of points at which the function f(x) is non-differentiable in $[0, 2\pi]$, is:

- (a) 5
- (b) 4
- (c) 3
- (d) 2

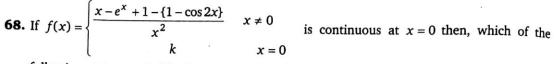
52				Adva	nced Problem	s in Mathematic	s for JE
g(1)=2	and g be different $g = g'(1)$ and $f'(1)$	(0) = 4. If h(x)	= f(2xg)	$(x) + \cos \pi$		(1) is equal to	
(a) 28		(b) 24		(c) 32		(d) 18	
53. If $f(x)$	$=\frac{(x+1)^7\sqrt{1+}}{(x^2-x+1)}$	$\frac{x^2}{6}$, then the v	alue of f'((0) is equa	al to :		
(a) 10		(b) 11		(c) 13		(d) 15	
54. Staten	nent-1: The fu	$nction f(x) = \int_{0}^{x} f(x) dx$	$\lim_{n\to\infty}\frac{\log_e(1}$	$(x^2 + x) - x^2$	$\frac{2n}{n} \frac{\sin(2x)}{\sin(2x)}$ is o	discontinuous a	at $x = 1$.
	nent-2 : L H. L						
(a) Sta	itement-1 is tri			and Stat	tement-2 is	correct explan	ation fo
	tement-1 is true tement-1	e, Statement-2	is true and	Stateme	nt-2 is not the	correct explan	ation fo
(c) Sta	tement-1 is true	e, Statement-2	is false				•
(d) Sta	tement-1 is fals	e, Statement-2	is true			· . •	
55. If $f(x) =$	$= \begin{bmatrix} x & \text{if } x \\ 1-x & \text{if } x \end{bmatrix}$	is rational is irrational ,t	hen numbe	er of poi	nts for $x \in R$, where $y = f$	(<i>f</i> (<i>x</i>)) i
disconti	nuous is :						94
(a) 0	of points where	(b) 1	(c) 2		(d) Infinitely r	nany
56. Number	of points where	$e^{\int f(x)} = \int max$	(x^2-x-x)	$2 , x^2 - 3$	$3x) ; x \ge 0$		
	•		max (ln (–)	(), e ^x)	; $x < 0$		
is non-di	fferentiable wil	l be :		(90)			
(a) 1		ъ) 2		c) 3	~((d) None of th	ese
7. If the fur	f(x) = -4	$4e^{\frac{1-x}{2}} + 1 + x +$	$\frac{x^2}{2} + \frac{x^3}{3} a$	and $g(x)$	$=f^{-1}(x)$, the	en the value o	$f g' \left(\frac{-7}{6}\right)$
equals to	:						(- ,
(a) $\frac{1}{5}$	0	b) $-\frac{1}{5}$	(0	c) $\frac{6}{7}$		(d) $-\frac{6}{7}$	
8. Find <i>k</i> ; if	possible; so th	at					
	$f(x) = \begin{bmatrix} \frac{\ln(2)}{\ln^2(1)} \\ \frac{e^{\sin(1+x)}}{\ln(1+x)} \end{bmatrix}$	$\frac{-\cos 2x}{+\sin 3x};$ $\frac{k}{\tan 9x};$	x < 0 $x = 0$ $x > 0$,	
is continue	ous at $x = 0$.						
(a) $\frac{2}{3}$	(b	$\frac{1}{9}$	(c	$\frac{2}{9}$		(d) Not possib	le

(a) f(x) is continuous at x = 1



(c) $\lim_{x\to 1^+} f(x) = -\sin 1$ (d) $\lim_{x\to 1^-} f(x)$ does not exist

(b) $\lim_{x \to 1^+} f(x) = \log_e 3$



following statement is false?

(a)
$$k = \frac{-5}{2}$$
 (b) $\{k\} = \frac{1}{2}$

(b)
$$\{k\} = \frac{1}{2}$$

(c)
$$[k] = -2$$

(d)
$$[k] \{k\} = \frac{-3}{2}$$

(where [·] denotes greatest integer function and {·} denotes fraction part function.)

69. Let $f(x) = ||x^2 - 10x + 21| - p|$; then the exhaustive set of values of p for which f(x) has exactly 6 points of non-derivability; is:

(a) $(4, \infty)$

(a)
$$(4, \infty)$$
 (b) $(0, 4)$
70. If $f(x) = \sqrt{\frac{1 + \sin^{-1} x}{1 - \tan^{-1} x}}$; then $f'(0)$ is equal to:

(a) 4 (b) 3 (c) 2
71. For
$$t \in (0, 1)$$
; let $x = \sqrt{2^{\sin^{-1} t}}$ and $y = \sqrt{2^{\cos^{-1} t}}$,

then $1 + \left(\frac{dy}{dx}\right)^2$ equals:

(a)
$$\frac{x^2}{y^2}$$

(b)
$$\frac{y^2}{x^2}$$

(a)
$$\frac{x^2}{y^2}$$
 (b) $\frac{y^2}{x^2}$ (c) $\frac{x^2 + y^2}{y^2}$ (d) $\frac{x^2 + y^2}{y^2}$

(d)
$$\frac{x^2 + y^2}{x^2}$$

72. Let f(x) = -1 + |x-2| and g(x) = 1 - |x| then set of all possible value(s) of x for which (fog) (x) is discontinuous is:

(a) {0, 1, 2}

(d) an empty set

73. If $f(x) = [x] \tan (\pi x)$ then $f'(K^+)$ is equal to $(k \in I)$ and [...] denotes greatest integer function):

(c)
$$k\pi(-1)^{k+1}$$

(d)
$$(k-1)\pi(-1)^{k+1}$$

74. If
$$f(x) = \begin{bmatrix} \frac{ae^{\sin x} + be^{-\sin x} - c}{x^2}; & x \neq 0 \\ 2 & ; & x = 0 \end{bmatrix}$$
 is continuous at $x = 0$; then:

(a)
$$a = b = c$$
 (b) $a = 2b = 3c$

(c)
$$a = b = 2c$$

(d)
$$2a = 2b = c$$

75. If $\tan x \cdot \cot y = \sec \alpha$ where α is constant and $\alpha \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ then $\frac{d^2y}{dx^2}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ equals to :

76. If
$$y = (x-3)(x-2)(x-1) \times (x+1)(x+2)(x+3)$$
, then $\frac{d^2y}{dx^2}$ at $x = 1$ is :

(a) -101

(b) 48

(c) 56

(d) 190

77. Let $f(x+y) = f(x)f(y) \ \forall x, y \in R, f(0) \neq 0.$	If j	f(x) is	continuous	at	x=0,	then	f(x)	18
continuous at :								

- (a) all natural numbers only
- (b) all integers only
- (c) all rational numbers only
- (d) all real numbers

78. If
$$f(x) = 3x^9 - 2x^4 + 2x^3 - 3x^2 + x + \cos x + 5$$
 and $g(x) = f^{-1}(x)$; then the value of $g'(6)$ equals:

- (d) 3

79. If
$$y = f(x)$$
 and $z = g(x)$ then $\frac{d^2y}{dz^2}$ equals

(a) $\frac{g'f'' - f'g''}{(g')^2}$ (b) $\frac{g'f'' - f'g''}{(g')^3}$ (c) $\frac{f'g'' - g'f''}{(g')^3}$ (d) None of these

80. Let
$$f(x) = \begin{bmatrix} x+1 & ; & x<0 \\ |x-1| & ; & x\geq 0 \end{bmatrix}$$
 and $g(x) = \begin{bmatrix} x+1 & ; & x<0 \\ (x-1)^2 & ; & x\geq 0 \end{bmatrix}$ then

the number of points where g(f(x)) is not differentiable.

- (b) 1
- (d) None of these
- **81.** Let $f(x) = [\sin x] + [\cos x]$, $x \in [0, 2\pi]$, where [] denotes the greatest integer function, total number of points where f(x) is non differentiable is equal to :

- (d) 5

82. Let
$$f(x) = \cos x$$
, $g(x) = \begin{cases} \min\{f(t): 0 \le t \le x\} \\ (\sin x) - 1 \end{cases}$, $x \in [0, \pi]$

Then

- (a) g(x) is discontinuous at $x = \pi$
- (b) g(x) is continuous for $x \in [0, \infty)$
- (c) g(x) is differentiable at $x = \pi$
- (d) g(x) is differentiable for $x \in [0, \infty)$

83. If
$$f(x) = (4+x)^n$$
, $n \in N$ and $f^r(0)$ represents the r^{th} derivative of $f(x)$ at $x = 0$, then the value of $\sum_{r=0}^{\infty} \frac{f^r(0)}{r!}$ is equal to:

- (d) 4^n

$$\frac{1}{x^{n-1}} \quad \text{(b)} \quad 3^{n} \quad \text{(c)} \quad 5^{n}$$

$$84. \text{ Let } f(x) = \begin{cases} \frac{x}{1+|x|}, & |x| \ge 1 \\ \frac{x}{1-|x|}, & |x| < 1 \end{cases}, \text{ then domain of } f'(x) \text{ is :}$$

$$\frac{x}{1-|x|}, & |x| < 1$$

(b)
$$(-\infty, \infty) - \{-1, 0, 1\}$$

(b)
$$(-\infty, \infty) - \{-1, 0, 1\}$$
 (c) $(-\infty, \infty) - \{-1, 1\}$ (d) $(-\infty, \infty) - \{0\}$

(d)
$$(-\infty,\infty)$$
 – {(

85. If the function $f(x) = -4e^{\frac{1-x}{2}} + 1 + x + \frac{x^2}{2} + \frac{x^3}{3}$ and $g(x) = f^{-1}(x)$, then the value of $g'(\frac{-7}{6})$ equals:

(a) $\frac{1}{5}$

(b) $-\frac{1}{5}$

86. The number of points at which the function $f(x) = (x-|x|)^2(1-x+|x|)^2$ is not differentiable in the interval (-3, 4) is:

(c) Two

(d) Three

(a) Zero (b) One 87. If $f(x) = \sqrt{\frac{1 + \sin^{-1} x}{1 - \tan^{-1} x}}$; then f'(0) is equal to :

(a) 4

(d) 1

88. If $f(x) = \begin{bmatrix} e^{x-1} & 0 \le x \le 1 \\ x+1-\{x\} & 1 < x < 3 \end{bmatrix}$ and $g(x) = x^2 - ax + b$ such that f(x)g(x) is continuous in

[0, 3) then the ordered pair (a, b) is (where $\{\cdot\}$ denotes fractional part function):

(b) (1, 2)

(c) (3, 2)

(d) (2,2)

89. Use the following table and the fact that f(x) is invertible and differentiable everywhere to find $f^{-1}(3)$:

f(x)f'(x)3 7 6 10

(c) $\frac{1}{10}$

(d) $\frac{1}{7}$

90. Let
$$f(x) = \begin{cases} x^n \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

Such that f(x) is continuous at x = 0; f'(0) is real and finite; and $\lim_{x \to 0} f'(x)$ does not exist. This holds true for which of the following values of n?

(a) 0

(b) 1

(c) 2

(d) 3

www.jeebooks.in

1/					80 T 1			A	nsv	ver	s								>
1.	(a)	2.	(d)	3.	(a)	4.	(b)	5.	(c)	6.	(a)	7.	(c)	8.	(c)	9.	(a)	10.	(a)
11.	(a)	12.	(ъ)	13.	(d)	14.	(c)	15.	(ъ)	16.	(c)	17.	(c)	18.	(ъ)	19.	(c)	20.	(d
21.	(a)	22.	(c)	23.	(ъ)	24.	(c)	25.	(c)	26.	(c)	27.	(a)	28.	(ъ)	29.	(d)	30.	(c)
31.	(d)	32.	(a)	33.	(c)	34.	(a)	35.	(c)	36.	(c)	37.	(c)	38.	(ъ)	39.	(b)	40.	(d)
41.	(c)	42.	(ъ)	43.	(c)	44.	(b)	45.	(a)	46.	(a)	47.	(c)	48.	(a)	49.	(c)	50.	(d)
51.	(c)	52.	(c)	53.	(c)	54.	(c)	55.	(a)	56.	(c)	57.	(a)	58.	(c)	59.	(c)	60.	(d)
61.	(b)	62.	(ъ)	63.	(a)	64.	(c)	65.	(c)	66.	(c)	67.	(c)	68.	(c)	69.	(ъ)	70.	(d)
71.	(d)	72.	(d)	73.	(ъ)	74.	(d)	75.	(a)	76.	(c)	77.	(d)	78.	(a)	79.	(b)	80.	(c)
81.	(d)	82.	(b)	83.	(c)	84.	(c)	85.	(a)	86.	(a)	87.	(d)	88.	(c)	89.	(b)	90.	(c)

Exercise-2: One or More than One Answer is/are Correct

- **1.** If $f(x) = \tan^{-1} (\operatorname{sgn}(x^2 \lambda x + 1))$ has exactly one point of discontinuity, then the value of $\lambda \operatorname{can}$ be :
 - (a) 1
- b) -1
- (c) 2
- (d) -2

2.
$$f(x) = \begin{cases} 2(x+1) & ; & x \le -1 \\ \sqrt{1-x^2} & ; & -1 < x < 1, \text{ then } : \\ |||x|-1|-1| & ; & x \ge 1 \end{cases}$$

- (a) f(x) is non-differentiable at exactly three points
- (b) f(x) is continuous in $(-\infty, 1]$
- (c) f(x) is differentiable in $(-\infty, -1)$
- (d) f(x) is finite type of discontinuity at x = 1, but continuous at x = -1

3. Let
$$f(x) = \begin{bmatrix} x(3e^{1/x} + 4) \\ 2 - e^{1/x} \\ 0 \end{bmatrix}$$
; $x \neq 0$ $x \neq \frac{1}{\ln 2}$

which of the following statement(s) is/are correct?

- (a) f(x) is continuous at x = 0
- (b) f(x) is non-derivable at x = 0

(c) $f'(0^+) = -3$

- (d) $f'(0^-)$ does not exist
- **4.** Let $|f(x)| \le \sin^2 x$, $\forall x \in R$, then
 - (a) f(x) is continuous at x = 0
 - (b) f(x) is differentiable at x = 0
 - (c) f(x) is continuous but not differentiable at x = 0
 - (d) f(0) = 0

5. Let
$$f(x) = \begin{bmatrix} \frac{a(1-x\sin x) + b\cos x + 5}{x^2} & ; & x < 0 \\ 3 & ; & x = 0 \\ \left(1 + \left(\frac{cx + dx^3}{x^2}\right)\right)^{\frac{1}{x}} & ; & x > 0 \end{bmatrix}$$

If f is continuous at x = 0 then correct statement(s) is/are:

(a) a+c=-1

(b) b+c=-4

(c) a+b=-5

- (d) c + d = an irrational number
- **6.** If f(x) = ||x| 2| + p| have more than 3 points of non-derivability then the value of p can be:
 - (a) 0

(b) -1

(c) -2

(d) 2

7. Identify the options having correct statement:

- (a) $f(x) = \sqrt[3]{x^2|x|} 1 |x|$ is no where non-differentiable
- (b) $\lim_{x \to 0} ((x+5)\tan^{-1}(x+1)) ((x+1)\tan^{-1}(x+1)) = 2\pi$
- (c) $f(x) = \sin(\ln(x + \sqrt{x^2 + 1}))$ is an odd function
- (d) $f(x) = \frac{4-x^2}{4x-x^3}$ is discontinuous at exactly one point
- **8.** A twice differentiable function f(x) is defined for all real numbers and satisfies the following conditions:

$$f(0) = 2$$
; $f'(0) = -5$ and $f''(0) = 3$.

The function g(x) is defined by $g(x) = e^{ax} + f(x) \ \forall x \in \mathbb{R}$, where 'a' is any constant. If g'(0) + g''(0) = 0 then 'a' can be equal to:

- (a) 1
- (b) -1
- (c) 2
- (d) -2

9. If $f(x) = |x| \sin x$, then f is :

- (a) differentiable everywhere
- (b) not differentiable at $x = n \pi, n \in I$
- (c) not differentiable at x = 0
- (d) continuous at x = 0
- **10.** Let [] denotes the greatest integer function and $f(x) = [\tan^2 x]$, then
 - (a) $\lim_{x\to 0} f(x)$ does not exist
- (b) f(x) is continuous at x = 0
- (c) f(x) is not differentiable at x = 0
- (d) f'(0) = 0
- **11.** Let f be a differentiable function satisfying $f'(x) = f'(-x) \ \forall \ x \in \mathbb{R}$. Then
 - (a) If f(1) = f(2), then f(-1) = f(-2)
 - (b) $\frac{1}{2}f(x) + \frac{1}{2}f(y) = f\left(\frac{1}{2}(x+y)\right)$ for all real values of x, y
 - (c) Let f(x) be an even function, then $f(x) = 0 \forall x \in R$
 - (d) $f(x) + f(-x) = 2f(0) \forall x \in R$
- **12.** Let $f: R \to R$ be a function, such that $|f(x)| \le x^{4n}$, $n \in N \ \forall x \in R$ then f(x) is:
 - (a) discontinuous at x = 0
- (b) continuous at x = 0
- (c) non-differentiable at x = 0
- (d) differentiable at x = 0
- 13. Let f(x) = [x] and g(x) = 0 when x is an integer and $g(x) = x^2$ when x is not an integer ([] is the greatest integer function) then:
 - (a) $\lim_{x \to 0} g(x)$ exists, but g(x) is not continuous at x = 1
 - (b) $\lim_{x\to 1} f(x)$ does not exist
 - (c) gof is continuous for all x
 - (d) fog is continuous for all x

www.jeebooks.in

- **14.** Let the function f be defined by $f(x) = \begin{cases} p + qx + x^2 & , & x < 2 \\ 2px + 3qx^2 & , & x \ge 2 \end{cases}$. Then:
 - (a) f(x) is continuous in R if 3p + 10q = 4
 - (b) f(x) is differentiable in R if $p = q = \frac{4}{13}$
 - (c) If p = -2, q = 1, then f(x) is continuous in R
 - (d) f(x) is differentiable in R if 2p + 11q = 4
- **15.** Let f(x) = |2x 9| + |2x| + |2x + 9|. Which of the following are true?
 - (a) f(x) is not differentiable at $x = \frac{9}{2}$
- (b) f(x) is not differentiable at $x = \frac{-9}{2}$
- (c) f(x) is not differentiable at x = 0
- (d) f(x) is differentiable at $x = \frac{-9}{2}$, 0, $\frac{9}{2}$
- **16.** Let $f(x) = \max(x, x^2, x^3)$ in $-2 \le x \le 2$. Then:
 - (a) f(x) is continuous in $-2 \le x \le 2$
- (b) f(x) is not differentiable at x = 1

(c) $f(-1) + f\left(\frac{3}{2}\right) = \frac{35}{8}$

- (d) $f'(-1)f'(\frac{3}{2}) = \frac{-35}{4}$
- 17. If f(x) be a differentiable function satisfying $f(y)f\left(\frac{x}{y}\right) = f(x) \ \forall \ x, y \in R, \ y \neq 0 \ \text{and} \ f(1) \neq 0$,
 - f'(1) = 3, then:
 - (a) sgn(f(x)) is non-differentiable at exactly one point
 - (b) $\lim_{x\to 0} \frac{x^2(\cos x 1)}{f(x)} = 0$
 - (c) f(x) = x has 3 solutions
 - (d) $f(f(x)) f^3(x) = 0$ has infinitely many solutions
- **18.** Let $f(x) = (x^2 3x + 2)(x^2 + 3x + 2)$ and α, β, γ satisfy $\alpha < \beta < \gamma$ are the roots of f'(x) = 0 then which of the following is/are correct ([·] denotes greatest integer function)?
 - (a) $[\alpha] = -2$

(b) $[\beta] = -1$

(c) $[\beta] = 0$

- (d) $[\alpha] 1$
- **19.** Let the function f be defined by $f(x) = \begin{cases} p + qx + x^2, & x < 2 \\ 2px + 3qx^2, & x \ge 2 \end{cases}$. Then:
 - (a) f(x) is continuous in R if 3p + 10q = 4
 - (b) f(x) is differentiable in R if $p = q = \frac{4}{13}$
 - (c) If p = -2, q = 1, then f(x) is continuous in R
 - (d) f(x) is differentiable in R if 2p + 11q = 4

20. If $y = e^{x \sin(x^3)} + (\tan x)^x$ then $\frac{dy}{dx}$ may be equal to:

(a)
$$e^{x \sin(x^3)} [3x^3 \cos(x^3) + \sin(x^3)] + (\tan x)^x [\ln \tan x + 2x \csc 2x]$$

(b)
$$e^{x \sin(x^3)} [x^3 \cos(x^3) + \sin(x^3)] + (\tan x)^x [\ln \tan x + 2x \csc 2x]$$

(c)
$$e^{x \sin(x^3)} [x^3 \sin(x^3) + \cos(x^3)] + (\tan x)^x [\ln \tan x + 2 \csc 2x]$$

(d)
$$e^{x \sin(x^3)} [3x^3 \cos(x^3) + \sin(x^3)] + (\tan x)^x \left[\ln \tan x + \frac{x \sec^2 x}{\tan x} \right]$$

21. Let $f(x) = x + (1-x)x^2 + (1-x)(1-x^2)x^3 + \dots + (1-x)(1-x^2)\dots + (1-x^{n-1})x^n$; $(n \ge 4)$

(a)
$$f(x) = -\prod_{r=1}^{n} (1 - x^r)$$

(b)
$$f(x) = 1 - \prod_{r=1}^{n} (1 - x^r)$$

(a)
$$f(x) = -\prod_{r=1}^{n} (1 - x^r)$$
 (b) $f(x) = 1 - \prod_{r=1}^{n} (1 - x^r)$ (c) $f'(x) = (1 - f(x)) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1 - x^r)} \right)$ (d) $f'(x) = f(x) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1 - x^r)} \right)$

(d)
$$f'(x) = f(x) \left(\sum_{r=1}^{n} \frac{r x^{r-1}}{(1 - x^r)} \right)$$

22. Let
$$f(x) = \begin{bmatrix} x^2 + \alpha \ ; \ 0 \le x < 1 \\ 2x + b \ ; \ 1 \le x \le 2 \end{bmatrix}$$
 and $g(x) = \begin{bmatrix} 3x + b \ ; \ 0 \le x < 1 \\ x^3 \ ; \ 1 \le x \le 2 \end{bmatrix}$

If derivative of f(x) w.r.t. g(x) at x = 1 exists and is equal to λ , then which of the following is/are correct?

(a)
$$a + b = -3$$

(b)
$$a - b = 1$$

(c)
$$\frac{ab}{\lambda} = 3$$

(a)
$$a+b=-3$$
 (b) $a-b=1$ (c) $\frac{ab}{\lambda}=3$ (d) $\frac{-b}{\lambda}=3$

23. If
$$f(x) = \begin{bmatrix} \frac{\sin[x^2]\pi}{x^2 - 3x + 8} + ax^3 + b ; 0 \le x \le 1 \\ x^2 - 3x + 8 \end{bmatrix}$$
 is differentiable in [0, 2] then:

([·] denotes greatest integer function)

(a)
$$a = \frac{1}{3}$$

(b)
$$a = \frac{1}{6}$$

(a)
$$a = \frac{1}{3}$$
 (b) $a = \frac{1}{6}$ (c) $b = \frac{\pi}{4} - \frac{13}{6}$ (d) $b = \frac{\pi}{4} - \frac{7}{3}$

(d)
$$b = \frac{\pi}{4} - \frac{7}{3}$$

24. If $f(x) = \begin{cases} 1 + x & 0 \le x \le 2 \\ 3 - x & 2 < x \le 3 \end{cases}$, then f(f(x)) is not differentiable at:

(a)
$$x = 1$$

(b)
$$x = 2$$

(c)
$$x = \frac{5}{2}$$
 (d) $x = 3$

(d)
$$x = 3$$

25. Let f(x) = (x+1)(x+2)(x+3)....(x+100) and $g(x) = f(x)f''(x) - (f'(x))^2$. Let n be the number of real roots of g(x) = 0, then:

(a)
$$n < 2$$

(b)
$$n > 2$$

(c)
$$n < 100$$

(d)
$$n > 100$$

26. If
$$f(x) = \begin{cases} |x| - 3, & x < 1 \\ |x - 2| + a, & x \ge 1 \end{cases}$$
, $g(x) = \begin{cases} 2 - |x|, & x < 2 \\ sgn(x) - b, & x \ge 2 \end{cases}$

If h(x) = f(x) + g(x) is discontinuous at exactly one point, then which of the following are correct?

(a)
$$a = -3, b = 0$$

(a)
$$a = -3, b = 0$$
 (b) $a = -3, b = -1$ (c) $a = 2, b = 1$ (d) $a = 0, b = 1$

(c)
$$a = 2, b = 1$$

(d)
$$a = 0, b = 1$$

27. Let f(x) be a continuous function in [-1, 1] such that

$$f(x) = \begin{bmatrix} \frac{\ln(ax^2 + bx + c)}{x^2} ; -1 \le x < 0 \\ 1 ; x = 0 \\ \frac{\sin(e^{x^2} - 1)}{x^2} ; 0 < x \le 1 \end{bmatrix}$$

Then which of the following is/are correct?

$$(a) \quad a+b+c=0$$

(b)
$$b = a + c$$

(c)
$$c = 1 + b$$

(d)
$$b^2 + c^2 = 1$$

(a) a+b+c=0 (b) b=a+c (c) c=1+b (d) $b^2+c^2=1$ **28.** f(x) is differentiable function satisfying the relationship $f^2(x)+f^2(y)+2(xy-1)=f^2(x+y)$ $\forall x, y \in R$

Also $f(x) > 0 \ \forall \ x \in R$ and $f(\sqrt{2}) = 2$. Then which of the following statement(s) is/are correct about f(x)?

- (a) $[f(3)] = 3([\cdot]]$ denotes greatest integer function)
- (b) $f(\sqrt{7}) = 3$
- (c) f(x) is even
- (d) f'(0) = 0

29. The function
$$f(x) = \left[\sqrt{1 - \sqrt{1 - x^2}} \right]$$
, (where [·] denotes greatest integer function) :

- (a) has domain [-1, 1]
- (b) is discontinuous at two points in its domain
- (c) is discontinuous at x = 0
- (d) is discontinuous at x = 1
- **30.** A function f(x) satisfies the relation :

$$f(x+y) = f(x) + f(y) + xy(x+y) \forall x, y \in R.$$
 If $f'(0) = -1$, then:

- (a) f(x) is a polynomial function
- (b) f(x) is an exponential function
- (c) f(x) is twice differentiable for all $x \in R$
- (d) f'(3) = 8

31. The points of discontinuities of $f(x) = \left[\frac{6x}{\pi}\right] \cos\left[\frac{3x}{\pi}\right]$ in $\left[\frac{\pi}{6}, \pi\right]$ is/are:

(where [·] denotes greatest integer function)

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{2}$$

32. Let
$$f(x) = \begin{cases} \frac{x^2}{2} & 0 \le x < 1 \\ 2x^2 - 3x + \frac{3}{2} & 1 \le x \le 2 \end{cases}$$
, then in [0, 2]:

- (a) f(x), f'(x) are continuous
- (b) f'(x) is continuous, f''(x) is not continuous
- (c) f''(x) is continuous
- (d) f''(x) is non differentiable

33. If
$$x = \phi(t)$$
, $y = \psi(t)$, then $\frac{d^2y}{dx^2} =$

(a)
$$\frac{\phi'\psi'' - \psi'\phi}{(\phi')^2}$$

(b)
$$\frac{\phi'\psi''-\psi'\phi}{(\phi')^3}$$

(c)
$$\frac{\psi''}{\phi'} - \frac{\psi'\phi''}{(\phi')^2}$$

(a)
$$\frac{\phi'\psi'' - \psi'\phi''}{(\phi')^2}$$
 (b) $\frac{\phi'\psi'' - \psi'\phi''}{(\phi')^3}$ (c) $\frac{\psi''}{\phi'} - \frac{\psi'\phi''}{(\phi')^2}$ (d) $\frac{\psi''}{(\phi')^2} - \frac{\psi'\phi''}{(\phi')^3}$

34.
$$f(x) = [x]$$
 and $g(x) = \begin{cases} 0 & \text{, } x \in I \\ x^2 & \text{, } x \notin I \end{cases}$ where $[\cdot]$ denotes the greatest integer function. Then

- (a) gof is continuous for all x
- (b) gof is not continuous for all x
- (c) fog is continuous everywhere
- (d) fog is not continuous everywhere

35. Let
$$f:R^+ \to R$$
 defined as $f(x) = e^x + \ln x$ and $g = f^{-1}$ then correct statement(s) is/are:

(a)
$$g''(e) = \frac{1-e}{(1+e)^3}$$
 (b) $g''(e) = \frac{e-1}{(1+e)^3}$ (c) $g'(e) = e+1$ (d) $g'(e) = \frac{1}{e+1}$

(c)
$$g'(e) = e + 1$$

(d)
$$g'(e) = \frac{1}{e+1}$$

36. Let
$$f(x) = \begin{cases} \frac{3x - x^2}{2} & ; & x < 2 \\ [x - 1] & ; & 2 \le x < 3; \text{ then which of the following hold(s) good?} \\ x^2 - 8x + 17 & ; & x \ge 3 \end{cases}$$

([.] denotes greatest integer function)

(a)
$$\lim_{x \to 2} f(x) = 1$$

(b)
$$f(x)$$
 is differentiable at $x = 2$

(c)
$$f(x)$$
 is continuous at $x = 2$

(d)
$$f(x)$$
 is discontinuus at $x = 3$

www.jeebooks.in

4	1			ř	Ans	wer	s		A Company of	1	
1.	(c, d)	2.	(a, c, d)	3.	(a, b, c)	4.	(a, b, d)	5.	(a, b, c, d)	6.	(b, c)
7.	(a, b, c)	8.	(a, d)	9.	(a, d)	10.	(b, d)	11.	(a, d)	12.	(b, d)
13.	(a, b, c)	14.	(a, b, c)	15.	(a, b, c)	16.	(a, b, c)	17.	(a, b, c, d)	18.	(a, c)
19.	(a, b, c)	20.	(a, d)	21.	(b, c)	22.	(a, b, c, d)	23.	(b, c)	24.	(a, b)
25.	(a, c)	26.	(a, b, c, d)	27.	(c, d)	28.	(a, b, c, d)	29.	(a, b, d)	30.	(a, c, d)
31.	(b, c)	32.	(a, b, d)	33.	(b, d)	34.	(a)	35.	(a, d)	36.	(a, c, d)

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let
$$f(x) = \lim_{n \to \infty} n^2 \tan \left(\ln \left(\sec \frac{x}{n} \right) \right)$$
 and $g(x) = \min (f(x), \{x\})$

(where {·} denotes fractional part function)

- **1.** Left hand derivative of $\phi(x) = e^{\sqrt{2f(x)}}$ at x = 0 is :
- (c) -1
- (d) Does not exist
- **2.** Number of points in $x \in [-1, 2]$ at which g(x) is discontinuous :
- (b) 1
- (d) 3

Paragraph for Question Nos. 3 to 4

Let f(x) and g(x) be two differentiable functions, defined as:

$$f(x) = x^2 + xg'(1) + g''(2)$$
 and $g(x) = f(1)x^2 + xf'(x) + f''(x)$.

- **3.** The value of f(1) + g(-1) is :
 - (a) 0
- (c) 2
- (d) 3
- **4.** The number of integers in the domain of the function $F(x) = \sqrt{-\frac{f(x)}{g(x)}} + \sqrt{3-x}$ is :
 - (a) 0
- (b) 1
- (c) 2
- (d) Infinite

Paragraph for Question Nos. 5 to 6

Define: $f(x) = |x^2 - 4x + 3| \ln x + 2(x-2)^{1/3}, x > 0$

$$h(x) = \begin{cases} x-1 &, x \in Q \\ x^2 - x - 2 &, x \notin Q \end{cases}$$

- **5.** f(x) is non-differentiable at points and the sum of corresponding x value(s) is
 - (a) 3, 6
- (c) 2, 4
- (d) 2, 5

- **6.** h(x) is discontinuous at $x = \dots$
 - (a) $1 + \sqrt{2}$
- (b) $\tan \frac{3\pi}{8}$
- (c) $\tan \frac{7\pi}{8}$ (d) $\sqrt{2} 1$

Paragraph for Question Nos. 7 to 8

www.jeebooks.in

Consider a function defined in [-2, 2]

fraction defined in [-2, 2]

$$f(x) = \begin{cases} \{x\} & -2 \le x < -1 \\ |\operatorname{sgn} x| & -1 \le x \le 1 \\ |-x\} & 1 < x \le 2 \end{cases}$$

where {·} denotes the fractional part function.

7. The total number of points of discontinuity	y of $f(x)$ for $x \in [-2, 2]$ is:
--	-------------------------------------

- (a) 0
- (b) 1

- **8.** The number of points for $x \in [-2, 2]$ where f(x) is non-differentiable is :
 - (a) 0
- (b) 1
- (d) 3

Paragraph for Question Nos. 9 to 10

Consider a function f(x) in $[0, 2\pi]$ defined as:

$$f(x) = \begin{bmatrix} [\sin x] + [\cos x] & ; & 0 \le x \le \pi \\ [\sin x] - [\cos x] & ; & \pi < x \le 2\pi \end{bmatrix}$$

where [-] denotes greatest integer function then

- **9.** Number of points where f(x) is non-derivable :
 - (a) 2
- (b) 3
- (c) 4
- (d) 5

- $\lim_{x \to \infty} f(x)$ equals $x \rightarrow \left(\frac{3\pi}{2}\right)$
 - (a) 0
- (b) 1
- (c) -1
- (d) 2

Paragraph for Question Nos. 11 to 13

Let $f(x) = \begin{cases} x[x] & 0 \le x < 2 \\ (x-1)[x] & 2 \le x \le 3 \end{cases}$ where [x] = greatest integer less than or equal to x, then:

- **11.** The number of values of x for $x \in [0, 3]$ where f(x) is discontinuous is :
- (b) 1

- **12.** The number of values of x for $x \in [0, 3]$ where f(x) is non-differentiable is :
- (b) 1
- (d) 3
- **13.** The number of integers in the range of y = f(x) is:
 - (a) 3
- (b) 4
- (d) 6

Paragraph for Question Nos. 14 to 16

Let $f: R \to R$ be a continuous and differentiable function such that $f(x+y) = f(x) \cdot f(y)$ $\forall x, y, f(x) \neq 0 \text{ and } f(0) = 1 \text{ and } f'(0) = 2.$

Let $g(xy) = g(x) \cdot g(y) \forall x, y \text{ and } g'(1) = 2; g(1) \neq 0$

14. Identify the correct option:

(a)
$$f(2) = e^4$$

(b)
$$f(2) = 2e^2$$

(c)
$$f(1) < 4$$

(d)
$$f(3) > 729$$

15. Identify the correct option:

(a)
$$g(2) = 2$$

(b)
$$g(3) = 3$$

(c)
$$g(3) = 9$$

(d)
$$g(3) = 6$$

16. The number of values of x, where f(x) = g(x):

Paragraph for Question Nos. 17 to 18

Let $f(x) = \frac{\cos^2 x}{1 + \cos x + \cos^2 x}$ and $g(x) = \lambda \tan x + (1 - \lambda) \sin x - x$, where $\lambda \in R$ and $x \in [0, \pi/2)$.

17. g'(x) equals

(a)
$$\frac{(1-\cos x)(f(x)-\lambda)}{\cos x}$$

(b)
$$\frac{(1-\cos x)(\lambda-f(x))}{\cos x}$$

(c)
$$\frac{(1-\cos x)(\lambda-f(x))}{f(x)}$$

(b)
$$\frac{(1-\cos x)(\lambda - f(x))}{\cos x}$$
(d)
$$\frac{(1-\cos x)(\lambda - f(x))}{(f(x))^2}$$

18. The exhaustive set of values of ' λ ' such that $g'(x) \ge 0$ for any $x \in [0, \pi/2)$:

(c)
$$\left[\frac{1}{2},\infty\right]$$
 (d) $\left[\frac{1}{3},\infty\right]$

(d)
$$\left[\frac{1}{3}, \infty\right]$$

Paragraph for Question Nos. 19 to 21

Let $f(x) = \lim_{n \to \infty} \frac{x^2 + 2(x+1)^{2n}}{(x+1)^{2n+1} + x^2 + 1}, n \in \mathbb{N}$ and

$$g(x) = \tan\left(\frac{1}{2}\sin^{-1}\left(\frac{2f(x)}{1+f^2(x)}\right)\right)$$
, then

19. The number of points where g(x) is non-differentiable $\forall x \in R$ is :

20. $\lim_{x \to -3} \frac{(x^2 + 4x + 3)}{\sin(x + 3)g(x)}$ is equal to :

21.
$$\lim_{x\to 0^-} \left\{ \frac{f(x)}{\tan^2 x} \right\} + \left| \lim_{x\to -2^-} f(x) \right| + \lim_{x\to -2^+} (5f(x))$$
 is equal to

(where {·} denotes fraction part function)

Paragraph for Question Nos. 22 to 24

Let f and g be two differentiable functions such that :

$$f(x) = g'(1)\sin x + (g''(2) - 1)x$$
$$g(x) = x^2 - f'\left(\frac{\pi}{2}\right)x + f''\left(-\frac{\pi}{2}\right)$$

- **22.** The number of solution(s) of the equation f(x) = g(x) is/are:
 - (a) 1
- (b) 2
- (c) 3
- (d) infinite
- **23.** If $\int \frac{g(\cos x)}{f(x) x} dx = \cos x + \ln(h(x)) + C$ where C is constant and $h\left(\frac{\pi}{2}\right) = 1$ then $\left| h\left(\frac{2\pi}{3}\right) \right|$ is:
 - (a) $3\sqrt{2}$
- (b) 2√3
- (c) √3
- (d) $\frac{1}{\sqrt{3}}$

- **24.** If $\phi(x) = f^{-1}(x)$ then $\phi'\left(\frac{\pi}{2} + 1\right)$ equals to :
 - (a) $\frac{\pi}{2} + 1$
- (b) $\frac{\pi}{2}$
- (c) 1
- (d) 0

Paragraph for Question Nos. 25 to 26

Suppose a function f(x) satisfies the following conditions

$$f(x+y) = \frac{f(x)+f(y)}{1+f(x) f(y)}, \forall x, y \in R \text{ and } f'(0) = 1$$

Also
$$-1 < f(x) < 1, \forall x \in R$$

- **25.** f(x) increases in the complete interval :
 - (a) $(-\infty, -1) \cup (-1, 0) \cup (0, 1) \cup (1, \infty)$
- (b) $(-\infty, \infty)$

(c) $(-\infty, -1) \cup (-1, 0)$

- (d) $(0, 1) \cup (1, \infty)$
- **26.** The value of the limit $lt (f(x))^x$ is:

x→∞

- (a) 0
- (b) 1
- (c) e
- (d) e^2

Paragraph for Question Nos. 27 to 28

Let f(x) be a polynomial satisfying $\lim_{x\to\infty} \frac{x^4 f(x)}{x^8 + 1} = 3$

$$f(2) = 5$$
, $f(3) = 10$, $f(-1) = 2$, $f(-6) = 37$

27. The value of $\lim_{x \to -6} \frac{f(x) - x^2 - 1}{3(x+6)}$ equals to :

(c)
$$\frac{6}{2}$$

(d)
$$\frac{-16}{2}$$

28. The number of points of discontinuity of $g(x) = \frac{1}{x^2 + 1 - f(x)} in \left[\frac{-15}{2}, \frac{5}{2} \right]$ equals :

Paragraph for Question Nos. 29 to 30

Consider $f(x) = x^{\ln x}$ and $g(x) = e^2 x$. Let α and β be two values of x satisfying f(x) = g(x) ($\alpha < \beta$)

29. If $\lim_{x\to\beta} \frac{f(x)-c\beta}{g(x)-\beta^2} = l$ then the value of c-l equals to :

(a)
$$4-e^2$$

(b)
$$e^2 - 4$$

30. If $h(x) = \frac{f(x)}{g(x)}$ then $h'(\alpha)$ equals to :

$$(d) -3e$$

7 Paragraph for Question Nos. 31 to 32

Let
$$f_n(x) + f_n(y) = \frac{x^n + y^n}{x^n y^n} \forall x, y \in R - \{0\}$$
 where $n \in N$ and

$$g(x) = \max_{x} \left\{ f_2(x), f_3(x), \frac{1}{2} \right\} \ \forall \ x \in \mathbb{R} - \{0\}$$

31. The minimum value of $\sum_{k=1}^{\infty} f_{2k}(\csc \theta) + \sum_{k=1}^{\infty} f_{2k}(\sec \theta)$, where $\theta \neq \frac{k\pi}{2}$; $k \in I$ is:

- (a) 1
- (b) 2
- (c) √2
- (d) 4

32. The number of values of x for which g(x) is non-differentiable $(x \in R - \{0\})$:

- (a) 3
- ·(b) 4
- (c) 5
- (d) 1

Answers 2. (a) 3. (d) 4. (c) 5. (d) 6. (d) 7. (b) 8. (d) **13.** (c) 14. 15. (c) **16.** (b) 17. 12. (a) (c) **18.** (d) 11. (c) 19. 20. (b) 24. (c) 25. (b) 26. (b) 27. (d) 28. (b) (a) 29. (b) (d)

www.jeebooks.in

70

Advanced Problems in Mathematics for JEE

Exercise-4: Matching Type Problems

1.

	Column-I		Column-II
(A)	If $\int_{0}^{\pi} \frac{\log \sin x}{\cos^2 x} dx = -K$ then the value of $\frac{3k}{\pi}$ is greater than	(P)	0
(B)	If $e^{x+y} + e^{y-x} = 1$ and $y'' - (y')^2 + K = 0$, then K is equal to	(Q)	1
(C)	If $f(x) = x \ln x$ then $2(f^{-1})'(\ln 4)$ is more than	(R)	2
(D)	$\lim_{x \to \infty} (x \ln x)^{\frac{1}{x^2 + 1}} \text{ is less than}$	(S)	4
	and the second of the second o	(T)	5

2. Let
$$f(x) = \begin{cases} [x] & \text{, } -2 \le x < 0 \\ |x| & \text{, } 0 \le x \le 2 \end{cases}$$

(where [·] denotes the greatest integer function) $g(x) = \sec x$, $x \in R - (2n+1)\frac{\pi}{2}$, $n \in I$

Match the following statements in column I with their values in column II in the interval $\left(-\frac{3\pi}{2},\frac{3\pi}{2}\right)$.

	Column-I		Column-II
(A)	Abscissa of points where limit of $fog(x)$ exist is/are	(P)	-1
(B)	Abscissa of points in domain of $gof(x)$, where limit of $gof(x)$ does not exist is/are	(Q)	π
(C)	Abscissa of points of discontinuity of $fog(x)$ is/are	(R)	$\frac{5\pi}{6}$
(D)	Abscissa of points of differentiability of $fog(x)$ is/are	(S)	-π
		(T)	0

3. Let a function $f(x) = [x]\{x\} - |x|$ where [·], {·} are greatest integer and fractional part respectively then match the following List-I with List-II.

Column-I			Column-II		
	f(x) is continuous at x equal to	(P)	3		
(B)	$\left \frac{4}{3} \right _{2}^{3} f(x) dx$ is equal to	(Q)	1		

Continuity, Differentiability and Differentiation

-				graduate and the second
	(C)	If $g(x) = x - 1$ and if $f(x) = g(x)$ where $x \in (-3, \infty)$, then number of solutions	(R)	4
	(D)	If $l = \lim_{x \to 4^+} f(x)$, then $-l$ is equal to	(S)	2

4.

	Column-I		Column-II
(A)	$\lim_{x \to \infty} \left(\frac{x^2 + 2x - 1}{2x^2 - 3x - 2} \right)^{\frac{2x + 1}{2x - 1}} =$	(P)	$\frac{1}{2}$
(B)	$\lim_{x \to 0} \frac{\log_{\sec x/2} \cos x}{\log_{\sec x} \cos \frac{x}{2}} =$	(Q)	2
(C)	Let $f(x) = \max(\cos x, x, 2x - 1)$ where $x \ge 0$ then number of points of non-differentiability of $f(x)$ is		5
(D)	If $f(x) = [2 + 3\sin x]$, $0 < x < \pi$ then number of points at which the function is discontinuous, is	(S)	16

5. The function
$$f(x) = ax(x-1) + b$$
 $x < 1$

$$= x-1$$
 $1 \le x \le 3$

$$= px^2 + qx + 2$$
 $x > 3$

if

- (i) f(x) is continuous for all x
- (ii) f'(1) does not exist
- (iii) f'(x) is continuous at x = 3, then

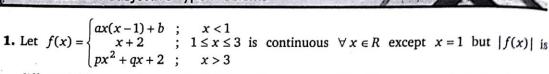
1	Column-I		Column-II
(A)	a cannot has value	(P)	1/3
(B)	b has value	(Q)	0
(C)	p has value	(R)	-1
(D)	q has value	(S)	1

Answers

- 1. $A \rightarrow P$, Q, R; $B \rightarrow Q$; $C \rightarrow P$, Q; $D \rightarrow R$, S, T
- 2. $A \rightarrow P$, Q, R, S, T; $B \rightarrow P$, T; $C \rightarrow Q$, S; $D \rightarrow P$, R, T
- 3. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$
- 4. $A \rightarrow P$; $B \rightarrow S$; $C \rightarrow Q$; $D \rightarrow R$
- 5. $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$

71

Exercise-5: Subjective Type Problems



differentiable everywhere and f'(x) is continuous at x = 3 and |a + p + b + q| = k, then k = 1

2. If
$$y = \sin(8\sin^{-1} x)$$
 then $(1 - x^2)\frac{d^2y}{dx^2} - x\frac{dy}{dx} = -ky$, where $k = -ky$

3. If
$$y^2 = 4ax$$
, then $\frac{d^2y}{dx^2} = \frac{ka^2}{y^3}$, where $k^2 = \frac{k^2}{y^3}$

4. The number of values of $x, x \in [-2, 3]$ where $f(x) = [x^2] \sin(\pi x)$ is discontinuous is (where []) denotes greatest integer function)

5. If f(x) is continuous and differentiable in [-3, 9] and $f'(x) \in [-2, 8] \ \forall \ x \in (-3, 9)$. Let N be the number of divisors of the greatest possible value of f(9) - f(-3), then find the sum of digits of N.

6. If
$$f(x) = \begin{bmatrix} \cos x^3 & ; & x < 0 \\ \sin x^3 - |x^3 - 1| & ; & x \ge 0 \end{bmatrix}$$

then find the number of points where g(x) = f(|x|) is non-differentiable.

7. Let $f(x) = x^2 + ax + 3$ and g(x) = x + b, where $F(x) = \lim_{n \to \infty} \frac{f(x) + (x^2)^n g(x)}{1 + (x^2)^n}$. If F(x) is continuous at x = 1 and x = -1 then find the value of $(a^2 + b^2)$.

8. Let
$$f(x) = \begin{cases} 2-x & , & -3 \le x \le 0 \\ x-2 & , & 0 < x < 4 \end{cases}$$

Then $f^{-1}(x)$ is discontinuous at x =

9. If $f(x) + 2f(1-x) = x^2 + 2 \forall x \in R$ and f(x) is a differentiable function, then the value of f'(8) is

10. Let f(x) = signum(x) and $g(x) = x(x^2 - 10x + 21)$, then the number of points of discontinuity of f[g(x)] is

11. If
$$\frac{d^2}{dx^2} \left(\frac{\sin^4 x + \sin^2 x + 1}{\sin^2 x + \sin x + 1} \right) = a \sin^2 x + b \sin x + c$$
 then the value of $b + c - a$ is

12. If
$$f(x) = a\cos(\pi x) + b$$
, $f'\left(\frac{1}{2}\right) = \pi$ and $\int_{1/2}^{3/2} f(x) dx = \frac{2}{\pi} + 1$, then find the value of $-\frac{12}{\pi} \left(\frac{\sin^{-1} a}{3} + \cos^{-1} b\right)$.

Continuity, Differentiability and Differentiation

13. Let
$$\alpha(x) = f(x) - f(2x)$$
 and $\beta(x) = f(x) - f(4x)$ and $\alpha'(1) = 5 \alpha'(2) = 7$

than find the value of $\beta'(1) - 10$

14. Let
$$f(x) = -4 \cdot e^{\frac{1-x}{2}} + \frac{x^3}{3} + \frac{x^2}{2} + x + 1$$
 and g be inverse function of f and $h(x) = \frac{a + bx^{3/2}}{x^{5/4}}$, $h'(5) = 0$, then $\frac{a^2}{5b^2g'\left(\frac{-7}{6}\right)} =$

www.jeebooks.in

15. If
$$y = e^{2\sin^{-1}x}$$
 then $\left| \frac{(x^2 - 1)y'' + xy'}{y} \right|$ is equal to

16. Let
$$f$$
 be a continuous function on $[0, \infty)$ such that $\lim_{x \to \infty} \left(f(x) + \int_0^x f(t) dt \right)$ exists. Find $\lim_{x \to \infty} f(x)$.

17. Let
$$f(x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5}$$
 and let $g(x) = f^{-1}(x)$. Find $g'''(0)$.

18. If
$$f(x) = \begin{bmatrix} \cos x^3 & ; & x < 0 \\ \sin x^3 - |x^3 - 1| & ; & x \ge 0 \end{bmatrix}$$

then find the number of points where g(x) = f(|x|) is non-differentiable.

19. Let $f: R^+ \longrightarrow R$ be a differentiable function satisfying :

$$f(xy) = \frac{f(x)}{y} + \frac{f(y)}{x} \quad \forall x, y \in \mathbb{R}^+ \quad \text{also} \quad f(1) = 0; f'(1) = 1$$

find $\lim_{x\to e} \left[\frac{1}{f(x)} \right]$ (where [·] denotes greatest integer function).

20. For the curve $\sin x + \sin y = 1$ lying in the first quadrant there exists a constant α for which $\lim_{x\to 0} x^{\alpha} \frac{d^2y}{dx^2} = L$ (not zero), then $2\alpha =$

21. Let $f(x) = x \tan^{-1}(x^2) + x^4$. Let $f^k(x)$ denotes k^{th} derivative of f(x) w.r.t. $x, k \in N$. If $f^{2m}(0) \neq 0, m \in N$, then m =

22. If
$$x = \cos \theta$$
 and $y = \sin^3 \theta$, then $\left| \frac{yd^2y}{dx^2} + \left(\frac{dy}{dx} \right)^2 \right|$ at $\theta = \frac{\pi}{2}$ is:

23. The value of $x, x \in (2, \infty)$ where $f(x) = \sqrt{x + \sqrt{8x - 16}} + \sqrt{x - \sqrt{8x - 16}}$ is not differentiable is :

24. The number of non differentiability points of function $f(x) = \min\left([x], \{x\}, \left|x - \frac{3}{2}\right|\right)$ for $x \in (0, 2)$, where [·] and {·} denote greatest integer function and fractional part function respectively.

						ers	Answ						
17	7.	2	6.	3	5.	8	4.	16	3.	64	2.	3	1.
5	14.	9	13.	2	12.	7	11.	3	10.	4	9.	2	8.
2	21.	3	20.	2	19.	2	18.	1	17.	0	16.	4	15.
			100					3	24.	4	23.	3	22.

Chapter 4 - Application of Derivatives

						1	APPLI DF	RIV			
4	Exc	ercise-1 : Sin	gle Cho	autoceauté	blems	enecular in the second					
1		e difference $x = 3\sin^4 x - \cos^4 x$		the	maximum	and	l minimum	value	of	the	function
	(a)	$\frac{3}{2}$	(b)	$\frac{5}{2}$		(c)	3	(d)	4		
2	the	unction $y = f(x)$ point (2, 1) an	d at that	point t	he tangent t	o the	graph is $y = 1$	3x - 5, th	nen th	ie fun	
		$(x-1)^2$					$(x+1)^3$				
3		ne subnormal at	any poin	t on the	e curve $y = 3$	3° °·.	x" is of consta	int lengti	n tner	ı <i>k</i> eqt	iais to :
	(a)	4	(b)			(c)		(d)			
4	. If x	$^{5} - 5qx + 4r$ is d	ivisible b	y(x-c)) ² then whic	ch of t	he following r	nust hole	d true	$\forall q, r$	$c, c \in R$?
	(a)	q = r	(b)	q + r =	: 0	(c)	$q^5=r^4$	(d)	q ⁴ =	= r ⁵	
5	. A sp	pherical iron ba rate of 50 cm ³	ll 10 cm i /min . Wi	n radiu nen the	s is coated w thickness of	vith a fice is	layer of ice of 5 cm, then th	uniform ne rate at	thick twhic	ness th	that melts thickness
	of i	ce decreases, is	:						_		
		$\frac{1}{36\pi}$ cm/min									
6.	. If <i>f</i>	$(x) = \frac{(x-1)(x)}{(x-3)(x)}$	$\frac{-2)}{-4}$, the	n num	ber of local	extre	mas for $g(x)$,	where g	(x) =	f(x	:():
	(a)	3	(b)	4		(c)	5	(d)) Nor	ie of t	hese
7.	OA tow	o straight roads = 700 m at a us rards B at a unif sest is:	niform sp	peed of	20 m/s, S	imult	aneously, a r	unner st	arts 1	unnir	ng from O
		10 sec				(b)	15 sec			¥.	
	1.5	20 sec					30 sec				

76							Advar	iced Pro	blems in	Mati	hemati	cs for JEE
		$f(x) = \begin{cases} a - 3x \\ 4x + 3 \end{cases}$								n rar	nge of	a, is :
	(a)	(-∞, 3)	(b)	(–∞, 3	3]	(c)	(3,∞)) ·	(d)	[3,	∞)	
9	. f(:	$(-\infty, 3)$ $x) = \begin{cases} 3 + x \\ a^2 - 2 + \frac{\sin x}{2} \end{cases}$	-k $n(x-k)$ $(x-k)$, x) , x	$\leq k$ > $k^{\text{has min}}$	nimum	1 at <i>x</i> =	= <i>k</i> , then				
	(a)	$a \in R$	(b)	a < 2	2	(c)	a > 1	2	(d)	1 <	a <2	
10	. For	$a \in R$ a certain curve	$\frac{d^2y}{dx^2} = 0$	óx – 4 a	nd curve ha	as loca	l minir	num val	ue 5 at .	x = 1	. Let 1	the global
		ximum and glob $-m$) equals to:	oal min	imum v	values, whe	ere 0≤	<i>x</i> ≤ 2	; are M	and m.	Th	en the	value of
		-2	(b)			-	12			-12		
11	. The	e tangent to $y =$	$ax^2 + b$	$x + \frac{7}{2}a$	it (1, 2) is p	paralle	l to the	norma	at the	poin	t (-2,	2) on the
		$ve y = x^2 + 6x +$		_								
	(a)	2	(b)	0		(c)	3		(d)	1		
12	. If (d	a, b) be the point	on the	curve	$9y^2 = x^3 $ w	vhere 1	normal	to the o	urve ma	ake e	qual i	ntercepts
	witl	n the axis, then	the valu	ie of (a	+b) is:		- E					*
	(a)			$\frac{10}{3}$			3				e of th	
13.	The	curve $y = f(x)$	satisfie	$s \frac{d^2y}{dx^2} =$	= 6 <i>x</i> – 4 and	d f(x)	has a	local mi	nimum	valu	e 5 wł	nen $x = 1$.
	The	n $f(0)$ is equal t	0:					,				
	(a)		(b)		2.2	(c)			(d)	Non	e of the	nese
14.		A be the point										
	agai	is, then the equa n, is :										
		$x - \alpha y + 2\alpha = 0$										
15.		$= \cos x + \frac{1}{2}\cos x$			greatest	and	the	least	value	of	the	function
		2	3				9		92,5000	7		
	(a)	5	(b)	6		(c)	4		(d)	' 3		
16.	The	x co-ordinate of	the poi	nt on t	he curve y	$=\sqrt{x}$	which	is closes	t to the	poin	it (2, 1	l) is:
	(a)	$\frac{2+\sqrt{3}}{2}$	(b)	$\frac{1+\sqrt{3}}{2}$		(c)	$\frac{-1+4}{2}$	$\sqrt{3}$	(d)			

Application of Derivatives

17. The tangent at a point P on the curve $y = \ln P$	$\left(\frac{2+\sqrt{4-x^2}}{2-\sqrt{4-x^2}}\right) - \sqrt{4-x^2} \text{ meets the } y\text{-axis at } T; \text{ then}$
---	--

 PT^2 equals to:

(a) 2

(b) · 4

(c) 8

(d) 16

18. Let
$$f(x) = \int_{x^2}^{x^3} \frac{dt}{\ln t}$$
 for $x > 1$

and $g(x) = \int_{1}^{x} (2t^{2} - \ln t) f(t) dt$ (x > 1), then:

- (a) g is increasing on $(1, \infty)$
- (b) g is decreasing on $(1, \infty)$
- (c) g is increasing on (1, 2) and decreasing on $(2, \infty)$
- (d) g is decreasing on (1, 2) and increasing on $(2, \infty)$
- 19. Let $f(x) = x^3 + 6x^2 + ax + 2$, if (-3, -1) is the largest possible interval for which f(x) is decreasing function, then a =

(a) 3

(b) 9

(c) -

(d) 1

20. Let $f(x) = \tan^{-1}\left(\frac{1-x}{1+x}\right)$. Then difference of the greatest and least value of f(x) on [0, 1] is:

(a) $\pi/2$

(b) π/4

(c) π

(d) π/

21. The number of integral values of a for which $f(x) = x^3 + (a+2)x^2 + 3ax + 5$ is monotonic in $\forall x \in \mathbb{R}$.

(a) 2

(h)

(c)

(d)

22. The number of critical points of $f(x) = \left(\int_{0}^{x} (\cos^2 t - \sqrt[3]{t}) dt\right) + \frac{3}{4}x^{4/3} - \frac{x+1}{2}$ in $[0, 6\pi]$ is :

(a) 10

(b) 8

(c)

(d) 12

23. Let $f(x) = \min\left(\frac{1}{2} - \frac{3x^2}{4}, \frac{5x^2}{4}\right)$ for $0 \le x \le 1$, then maximum value of f(x) is :

(a) 0

(b) $\frac{5}{4}$

(c) $\frac{5}{4}$

(d) $\frac{5}{16}$

24. Let
$$f(x) = \begin{cases} 2 - |x^2 + 5x + 6| & x \neq -2 \\ b^2 + 1 & x = -2 \end{cases}$$

Has relative maximum at x = -2, then complete set of values b can take is :

(a) $|b| \ge 1$

(b) |b| < 1

(c) b > 1

(d) b < 1

(d) None of these

(d) 5

25.	Let for the function $f($	$f(x) = \begin{bmatrix} \cos^{-1} x & ; & -1 \le \\ mx + c & ; & 0 < \end{bmatrix}$	$x \le 0$, $x \le 1$	
	Lagrange's mean value	e theorem is applicable	e in [-1, 1] then ordere	ed pair (m, c) is:
	(a) $\left(1,-\frac{\pi}{2}\right)$	(b) $\left(1,\frac{\pi}{2}\right)$	(c) $\left(-1,-\frac{\pi}{2}\right)$	(d) $\left(-1,\frac{\pi}{2}\right)$
26.	Tangents are drawn to	$y = \cos x$ from origin t	hen points of contact of	these tangents will always
	lie on:			
	(a) $\frac{1}{x^2} = \frac{1}{y^2} + 1$	(b) $\frac{1}{x^2} = \frac{1}{v^2} - 2$	(c) $\frac{1}{y^2} = \frac{1}{x^2} + 1$	(d) $\frac{1}{v^2} = \frac{1}{x^2} - 2$

27. Least natural number a for which $x + ax^{-2} > 2 \forall x \in (0, \infty)$ is:

- (b) 2 (a) 1 (b) 2 (c) 5 (d) None of these **28.** Angle between the tangents to the curve $y = x^2 - 5x + 6$ at points (2, 0) and (3, 0) is: (d) None of these (b) $\frac{\pi}{4}$
- **29.** Difference between the greatest and least values of the function $f(x) = \int (\cos^2 t + \cos t + 2) dt$

in the interval $[0, 2\pi]$ is $K\pi$, then K is equal to :

- **30.** The range of the function $f(\theta) = \frac{\sin \theta}{\theta} + \frac{\theta}{\tan \theta}$, $\theta \in \left(0, \frac{\pi}{2}\right)$ is equal to : (b) $\left(\frac{1}{\pi}, 2\right)$ (c) $(2, \infty)$ (d) $\left(\frac{2}{\pi}, 2\right)$ (a) (0,∞)
- **31.** Number of integers in the range of c so that the equation $x^3 3x + c = 0$ has all its roots real and distinct is:
- (a) 2 (b) 3 (c) 4 **32.** Let $f(x) = \int e^x (x-1)(x-2) dx$. Then f(x) decreases in the interval:
- (a) (2,∞) (b) (-2,-1)(c) (1, 2) (d) $(-\infty,1)\cup(2,\infty)$
- **33.** If the cubic polynomial $y = ax^3 + bx^2 + cx + d$ $(a, b, c, d \in R)$ has only one critical point in its entire domain and ac = 2, then the value of |b| is:
- **34.** On the curve $y = \frac{1}{1+x^2}$, the point at which $\left| \frac{dy}{dx} \right|$ is greatest in the first quadrant is :

(a) $\left(\frac{1}{2}, \frac{4}{5}\right)$ (b) $\left(1, \frac{1}{2}\right)$ (c) $\left(\frac{1}{\sqrt{2}}, \frac{2}{3}\right)$ (d) $\left(\frac{1}{\sqrt{3}}, \frac{3}{4}\right)$

4ppl	icatio	on of Derivatives		- 11						79
				()	<i>π</i>)					
35.	If <i>f</i> ((x) = 2x, g(x) = 3 si	$\ln x - x \cos x$, then for $x \in$	≡ (0, -	$\left(\frac{\pi}{2}\right)$:					
	(a)	f(x) > g(x)		(b)	f(x	(x) < g(x))			
	(c)	f(x) = g(x) has ex	actly one real root.	(d)	f(x)	=g(x)) has e	exactly tw	o real ro	ots
36.	Let j	$f(x) = \sin^{-1}\left(\frac{2g(1+g)}{1+g}\right)$	$\left(\frac{x}{(x)^2}\right)$, then which are co	orrect	t ?					
	(i)	f(x) is decreasing	if $g(x)$ is increasing and	g(x)	c) >	1				
			ng function if $g(x)$ is inc				c) ≤1			
			function if $g(x)$ is decre							
		(i) and (iii)	(b) (i) and (ii)					(d) (ii	i)	
37.	The	graph of the func	tion $y = f(x)$ has a uniq	ue ta	ange	nt at (e	a, 0) t	hrough w	hich the	graph
	pass	ses then $\lim_{x\to e^a} \frac{\ln(1-x)}{x}$	$\frac{+7f(x))-\sin(f(x))}{3f(x)}$ is eq	qual t	to:					
	(a)	1	(b) 3	(c)	2			(d) 7		
38.	Let ;	f(x) be a function so which $f(x)$ is strict	uch that $f'(x) = \log_{1/3}$ (let $f'(x) = \log_{1/3}$ (let $f'(x) = \log_{1/3}$) where $f'(x) = \log_{1/3}$	og ₃ (s valu	sin <i>x</i> es of	+ a)). T x is:	The co	mplete se	t of value	s of 'a'
		[4,∞)	(b) [3, 4]		(–∞			(d) [2, o	0)	
39.	If $f($	$(x) = a \ln x + bx^2$	+ x has extremas at $x = 1$	l and	l <i>x</i> =	3, then	:			
	(a)	$a=\frac{3}{4}, b=-\frac{1}{8}$	(b) $a = \frac{3}{4}, b = \frac{1}{8}$	(c)	<i>a</i> =	$-\frac{3}{4}$, $b =$	$=-\frac{1}{8}$	(d) a =	$-\frac{3}{4},b=\frac{1}{8}$	3
40.	Let .	$f(x) = \begin{cases} 1 + \sin x, \\ x^2 - x + 1, \end{cases}$	x < 0, then:							
	(a)	f has a local maxi	imum at $x = 0$	(b)	f h	as a loc	al mir	imum at	x = 0	
	(c)	f is increasing even	erywhere	(d)	f is	decrea	ising e	verywhei	re	
41.	If m	and n are positive	integers and $f(x) = \int_{1}^{x} (t)^{x}$	-a) ²	²ⁿ (t -	-b) ^{2m+1}	dt, a	≠ <i>b</i> ,then	:	
	(a)	x = b is a point of	local minimum	(b)) x	= b is a	point	of local n	naximum	i.
		x = a is a point of		(d)) x	= a is a	point	of local r	naximum	
42.	For	any real θ , the max	kimum value of cos2(cos	θ) + :	sin ²	(sin θ) i	s:			-
	(a)	1		(b)	1+	sin ² 1				
	(c)	$1 + \cos^2 1$		(d)	Do	es not e	exist			
43.	If th	ne tangent at P of	the curve $y^2 = x^3$ inters	ects	the	curve a	gain a	at Q and i	he straio	ht line
	OP,	OQ have inclination	ns a, b where O is origin,	then	tai	$\left(\frac{n \alpha}{n \beta}\right)$ ha	s the v	/alue, equ	ıals to :	
	(a)	-1	(b) -2	(c)	2			(d) √2		

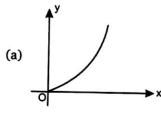
44. If x + 4y = 14 is a normal to the curve $y^2 = \alpha x^3 - \beta$ at (2, 3), then value of $\alpha + \beta$ is :

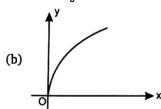
- (a) 9
- (b) -5
- (c) 7
- (d) -7

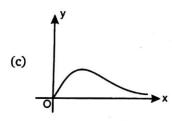
45. The tangent to the curve $y = e^{kx}$ at a point (0, 1) meets the x-axis at (a, 0) where $a \in [-2, -1]$, then $k \in \mathbb{N}$

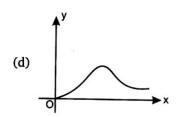
- (a) $\left[-\frac{1}{2},0\right]$
- (b) $\left[-1, -\frac{1}{2}\right]$
- (c) [0,1]
- (d) $\left[\frac{1}{2},1\right]$

46. Which of the following graph represent the function $f(x) = \int_{0}^{\sqrt{x}} e^{-\frac{u^2}{x}} du$, for x > 0 and f(0) = 0?









47. Let f(x) = (x-a)(x-b)(x-c) be a real valued function where a < b < c $(a, b, c \in R)$ such that $f''(\alpha) = 0$. Then if $\alpha \in (c_1, c_2)$, which one of the following is correct?

- (a) $a < c_1 < b \text{ and } b < c_2 < c$
- (b) $a < c_1, c_2 < b$

(c) $b < c_1, c_2 < c$

(d) None of these

48. $f(x) = x^6 - x - 1$, $x \in [1, 2]$. Consider the following statements :

(1) f is increasing on [1, 2]

(2) f has a root in [1, 2]

(3) f is decreasing on [1, 2]

(4) f has no root in [1, 2]

Which of the above are correct?

- (a) 1 and 2
- (b) 1 and 4
- (c) 2 and 3
- (d) 3 and 4

49. Which one of the following curves is the orthogonal trajectory of straight lines passing through a fixed point (a, b)?

(a) x-a=k(y-b)

(b) (x-a)(y-b) = k

(c) $(x-a)^2 = k(y-b)$

(d) $(x-a)^2 + (y-b)^2 = k$

Appl	ication of Derivatives			The transfer of the second	81
50.	The function $f(x) =$	$\sin^3 x - m \sin x$ is d	efined on open interval	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ and if assum	nes only 1
	must be correct?		alue on this interval. Th		following
	(a) $0 < m < 3$	(b) $-3 < m < 0$	(c) $m > 3$ $\binom{3}{4}, 4^{1/4}, 5^{1/5}, 6^{1/6}$ and $\binom{3}{4}$	(d) $m < -3$	
51.	The greatest of the n	umbers 1, $2^{1/2}$, $3^{1/2}$	$^{\prime 3}$, $4^{1/4}$, $5^{1/5}$, $6^{1/6}$ and $^{\prime 2}$	$7^{1/7}$ is:	
	(a) $2^{1/2}$	(b) $3^{1/3}$	(c) $7^{1/7}$	(d) $6^{1/6}$	
52.	Let <i>l</i> be the line thre	ough (0, 0) and tar	an a gent to the curve y = x	$x^3 + x + 16$. Then the	slope of l
	equal to:				
	(a) 10	(b) 11	(c) 17	(d) 13	
53.	The slope of the tang	gent at the point of	inflection of $y = x^3 - 3$	$x^2 + 6x + 2009$ is eq	qual to:
	(a) 2	(b) 3	(c) 1	(d) 4	
54.			+1) derivatives at each	point of R. For each p	oair of real
	numbers a , b , $a < b$,	such that	1 1 1	1 . 1	
		$ \ln \left[\frac{f(b) + f'(b) + f'(a)}{f(a) + f'(a)} \right] $	$\left \frac{\dots + f^{(n)}(b)}{+ \dots + f^{(n)}(a)} \right = b - a$		
	Statement-1: The	ere is a number $c \in$	(a, b) for which $f^{(n+1)}(a)$	f(c) = f(c)	
	because				
		$\iota(x)$ be a derivable	function such that $h(p)$	= h(q) then by Rolle	's theorem
	$h'(d)=0;d\in(p,q)$		F 1		
	(a) Statement-1 is statement-1	true, statement-2	is true and statemen	t-2 is correct expla	nation for
	(b) Statement-1 is statement-1	true, statement-2	is true and statement-2	is not correct expla	anation for
	(c) Statement-1 is	true, statement-2 i	s false		
	(d) Statement-1 is	false, statement-2	is true		
55.	If $g(x)$ is twice diff	ferentiable real val	lued function satisfying	$g''(x) - 3g'(x) > 3 \ \forall$	$x \ge 0$ and
	g'(0) = -1, then $h(x)$				
	(a) strictly increasi		(b) strictly de	•	
	(c) non monotonio	:	(d) data insu	fficient	
56.		oining the points (0), 3) and (5, –2) is tange	ent to the curve $y =$	$\frac{c}{x+1}$; then
	the value of c is:	(b) 2	(a) 4	(4) =	
	(a) 2	(b) 3	(c) 4	(d) 5	
57	 Number of solution 	$s(s) \text{ of } \ln \sin x = -$	$-x^2$ if $x \in \left[-\frac{\pi}{2}, \frac{3\pi}{2}\right]$ is/	are:	
	(a) 2	(b) 4	(c) 6	(d) 8	

OL SUPPLIES OF STREET	The Company of the Co		Advanced Problem	ns in Mainematics for JE
58. The equa	tion $\sin^{-1} x = x - a $	will have atleast on	e solution then co	emplete set of values of
(a) [-1,	1] (b) [-	$\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$ (c)	$\left[1-\frac{\pi}{2},1+\frac{\pi}{2}\right]$	(d) $\left[\frac{\pi}{2}-1,\frac{\pi}{2}+1\right]$
59. For any re	eal number b , let $f(b)$) denotes the maxim	um of $\left \sin x + \frac{1}{3+1} \right $	$\frac{2}{\sin x} + b \forall \times x \in R \ .$
Then the	minimum value of f	(b) $\forall b \in R \text{ is } :$		
(a) $\frac{1}{2}$	(b) $\frac{3}{4}$		$\frac{1}{4}$	(d) 1
60. Which of	the following are co	rrect		
		s exactly four real solu	ıtion	
(b) $x^5 +$	5x + 1 = 0 has exact	ly three real solutions		
				vo real solution $a, b, \in R$.
(d) x^3 -	-3x + c = 0 c > 0	two real solution for	x c (0.1)	o rear solution a, b, c n.
			4	ī
61. For any re	eal number b , let $f(b)$	denotes the maximum	n of $ \sin x + \frac{2}{3 + \sin x} $	$\frac{1}{x} + b \mid \forall x \in R$. Then the
	value of $f(b) \forall b \in$) J+3III	
(a) $\frac{1}{2}$	(b) $\frac{3}{4}$		1	(1)
$\frac{a}{2}$	(6) =	(c)	4	(d) 1
62. If <i>p</i> be a	point on the graph o	$f y = \frac{x}{1 + x^2}, then coo$	ordinates of 'p' suc	h that tangent drawn to
curve at j	p has the greatest slo			
(a) (0,0)	(b) (¬	$\sqrt{3}, \frac{\sqrt{3}}{4}$ (c)	$\left(-\sqrt{3},-\frac{\sqrt{3}}{4}\right)$	(d) $\left(1,\frac{1}{2}\right)$
63. Let <i>f</i> :[0,	2π] \rightarrow [-3, 3] be a give	en function defined as	$f(x) = 3\cos\frac{x}{2}.$ Th	e slope of the tangent to
the curve	$y = f^{-1}(x)$ at the po	oint where the curve o	crosses the y-axis i	s:
(a) -1	(b) -	3	$-\frac{1}{6}$	(d) $-\frac{1}{3}$
64. Number of	of stationary points in	$n [0, \pi]$ for the function	$n f(x) = \sin x + ta$	nx - 2x is:
(a) 0	(b) 1	(c)	2	(4) 0
65. If a, b, c, d	$\in R$ such that $\frac{a+2c}{b+3d}$	$+\frac{4}{3}=0$, then the equ	ation $ax^3 + bx^2 +$	cx + d = 0 has
(a) atlea	ast one root in (-1, 0)	(p.	atleast one root	in (0.1)
(c) no re	oot in (-1, 1)		no root in (0, 2)	(0, 1)

- **66.** If $f'(x) = \phi(x)(x-2)^2$. Where $\phi(2) \neq 0$ and $\phi(x)$ is continuous at x = 2, then in the neighbourhood of x = 2
 - (a) f is increasing if $\phi(2) < 0$
- (b) f is decreasing if $\phi(2) > 0$
- (c) f is neither increasing nor decreasing
- (d) f is increasing if $\phi(2) > 0$
- 67. If $f(x) = x^3 6x^2 + ax + b$ is defined on [1, 3] satisfies Rolle's theorem for $c = \frac{2\sqrt{3} + 1}{\sqrt{2}}$ then
 - (a) a = -11, b = 6
- (b) a = -11, b = -6
- (c) $a = 11, b \in R$
- (d) a = 22, b = -6
- 68. For which of the following function(s) Lagrange's mean value theorem is not applicable in
 - (a) $f(x) = \begin{cases} \frac{3}{2} x & , & x < \frac{3}{2} \\ \left(\frac{3}{2} x\right)^2 & , & x \ge \frac{3}{2} \end{cases}$
- (b) $f(x) = \begin{cases} \frac{\sin(x-1)}{x-1}, & x \neq 1 \\ 1, & x = 1 \end{cases}$
- (c) f(x) = (x-1)|x-1|

- (d) f(x) = |x-1|
- **69.** If the curves $\frac{x^2}{a^2} + \frac{y^2}{4} = 1$ and $y^2 = 16x$ intersect at right angles, then:
 - (a) $a = \pm 1$
- (b) $a = \pm \sqrt{3}$
- (c) $a = \pm \frac{1}{\sqrt{2}}$ (d) $a = \pm \sqrt{2}$
- **70.** If the line $x \cos \alpha + y \sin \alpha = P$ touches the curve $4x^3 = 27ay^2$, then $\frac{P}{a} = 27ay^2$
 - (a) $\cot^2 \alpha \cos \alpha$
- (b) $\cot^2 \alpha \sin \alpha$
- (c) $\tan^2 \alpha \cos \alpha$ (d) $\tan^2 \alpha \sin \alpha$

1	1			0010				A	nsv	ver	S	110.00							5
1.	(d)	2.	(b)	3.	(a)	4.	(c)	5.	(b)	6.	(c)	7.	(d)	8.	(d)	9.	(c)	10.	(b)
11.	(c)	12.	(c)	13.	(c)	14.	(c)	15.	(c)	16.	(a)	17.	(ъ)	18.	(a)	19.	(b)	20.	(b)
21.	(b)	22.	(d)	23.	(d)	24.	(a)	25.	(d)	26.	(c)	27.	(b)	28.	(d)	29.	(c)	30.	(d)
31.	(b)	32.	(c)	33.	(d)	34.	(d)	35.	(a)	36.	(b)	37.	(c)	38.	(a)	39.	(c)	40.	(a)
41.	(a)	42.	(b)	43.	(b)	44.	(a)	45.	(d)	46.	(ъ)	47.	(a)	48.	(a)	49.	(d)	50.	(a)
51.	(ъ)	52.	(d)	53.	(b)	54.	(a)	55.	(a)	56.	(c)	57.	(b)	58.	(c)	59.	(b)	60.	(c)
61.	(b)	62.	(a)	63.	(b)	64.	(c)	65.	(b)	66.	(d)	67.	(c)	68.	(a)	69.	(d)	70.	(a)

Exercise-2: One or More than One Answer is/are Correct

1. Common tangent(s) to $y = x^3$ and $x = y^3$ is/are:

(a)
$$x - y = \frac{1}{\sqrt{3}}$$

(b) $x-y = -\frac{1}{\sqrt{3}}$ (c) $x-y = \frac{2}{3\sqrt{3}}$ (d) $x-y = \frac{-2}{3\sqrt{3}}$

2. Let $f:[0,8] \to R$ be differentiable function such that f(0)=0, f(4)=1, f(8)=1, then which of the following hold(s) good?

(a) There exist some
$$c_1 \in (0, 8)$$
 where $f'(c_1) = \frac{1}{4}$

(b) There exist some
$$c \in (0, 8)$$
 where $f'(c) = \frac{1}{12}$

(c) There exist $c_1, c_2 \in [0, 8]$ where $8f'(c_1)f(c_2) = 1$

(d) There exist some $\alpha, \beta \in (0, 2)$ such that $\int_{0}^{\infty} f(t) dt = 3(\alpha^{2} f(\alpha^{3}) + \beta^{2} f(\beta^{3}))$

3. If
$$f(x) = \begin{cases} \sin^{-1}(\sin x) & x > 0 \\ \frac{\pi}{2} & x = 0, \text{ then} \\ \cos^{-1}(\cos x) & x < 0 \end{cases}$$

- (a) x = 0 is a point of maxima
- (b) f(x) is continuous $\forall x \in R$
- (c) global maximum value of $f(x) \forall x \in R$ is π
- (d) global minimum value of $f(x) \forall x \in R$ is 0

4. A function $f: R \to R$ is given by $f(x) = \begin{cases} x^4 \left(2 + \sin \frac{1}{x}\right) & x \neq 0 \\ 0 & x = 0 \end{cases}$, then

- (a) f has a continuous derivative $\forall x \in R$ (b) f is a bounded function (c) f has an global minimum at x = 0 (d) f'' is continuous $\forall x \in R$
- (d) f'' is continuous $\forall x \in R$

5. If $|f''(x)| \le 1 \forall x \in R$, and f(0) = 0 = f'(0), then which of the following can not be true?

(a)
$$f\left(-\frac{1}{2}\right) = \frac{1}{6}$$
 (b) $f(2) = -4$ (c) $f(-2) = 3$

6. Let $f:[-3,4] \to R$ such that f''(x) > 0 for all $x \in [-3,4]$, then which of the following are always

- (a) f(x) has a relative minimum on (-3, 4)
- (b) f(x) has a minimum on [-3, 4]
- (c) f(x) has a maximum on [-3, 4]
- (d) if f(3) = f(4), then f(x) has a critical point on [-3, 4]

- **7.** Let f(x) be twice differentiable function such that f''(x) > 0 in [0, 2]. Then:
 - (a) f(0) + f(2) = 2f(c), for at least one $c, c \in (0, 2)$
 - (b) f(0) + f(2) < 2f(1)
 - (c) f(0) + f(2) > 2f(1)
 - (d) $2f(0) + f(2) > 3f(\frac{2}{3})$
- **8.** Let g(x) be a cubic polynomial having local maximum at x = -1 and g'(x) has a local minimum at x = 1. If g(-1) = 10, g(3) = -22, then:
 - (a) perpendicular distance between its two horizontal tangents is 12
 - (b) perpendicular distance between its two horizontal tangents is 32
 - (c) g(x) = 0 has at least one real root lying in interval (-1, 0)
 - (d) g(x) = 0, has 3 distinct real roots
- **9.** The function $f(x) = 2x^3 3(\lambda + 2)x^2 + 2\lambda x + 5$ has a maximum and a minimum for :
 - (a) $\lambda \in (-4, \infty)$
- (b) $\lambda \in (-\infty, 0)$
- (c) $\lambda \in (-3,3)$
- (d) $\lambda \in (1, \infty)$
- **10.** The function $f(x) = 1 + x \ln(x + \sqrt{1 + x^2}) \sqrt{1 x^2}$ is :
 - (a) strictly increasing $\forall x \in (0,1)$
- (b) strictly decreasing $\forall x \in (-1, 0)$
- (c) strictly decreasing for $x \in (-1, 0)$
- (d) strictly decreasing for $x \in (0, 1)$
- 11. Let m and n be positive integers and x, y > 0 and x + y = k, where k is constant. Let $f(x,y) = x^m y^n$, then:
 - (a) f(x,y) is maximum when $x = \frac{mk}{m+n}$
 - (b) f(x, y) is maximum where x = y
 - (c) maximum value of f(x, y) is $\frac{m^n n^m k^{m+n}}{(m+n)^{m+n}}$
 - (d) maximum value of f(x, y) is $\frac{k^{m+n}m^m n^n}{(m+n)^{m+n}}$
- **12.** The straight line which is both tangent and normal to the curve $x = 3t^2$, $y = 2t^3$ is:
 - (a) $y + \sqrt{3}(x-1) = 0$

(b) $y - \sqrt{3}(x-1) = 0$

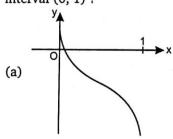
(c) $y + \sqrt{2}(x-2) = 0$

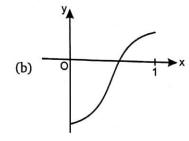
- (d) $y \sqrt{2}(x-2) = 0$
- 13. A curve is such that the ratio of the subnormal at any point to the sum of its co-ordinates is equal to the ratio of the ordinate of this point to its abscissa. If the curve passes through (1, 0), then possible equation of the curve(s) is:
- (a) $y = x \ln x$ (b) $y = \frac{\ln x}{x}$ (c) $y = \frac{2(x-1)}{x^2}$ (d) $y = \frac{1-x^2}{2x}$

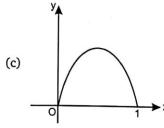
14. A parabola of the form $y = ax^2 + bx + c$ (a > 0) intersects the graph of $f(x) = \frac{1}{x^2 - 4}$. The number of possible distinct intersection(s) of these graph can be :

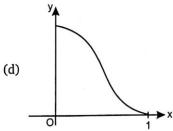
www.jeebooks.in

- (a) 0
- (b) 2
- (c) 3
- (d) 4
- **15.** Gradient of the line passing through the point (2, 8) and touching the curve $y = x^3$, can be:
 - (a) 3
- (b) 6
- (c) 9
- (d) 12
- **16.** The equation $x + \cos x = a$ has exactly one positive root, then :
 - (a) $a \in (0,1)$
- (b) $a \in (2,3)$
- (c) $a \in (1, \infty)$
- (d) $a \in (-\infty, 1)$
- **17.** Given that f(x) is a non-constant linear function. Then the curves :
 - (a) y = f(x) and $y = f^{-1}(x)$ are orthogonal
 - (b) y = f(x) and $y = f^{-1}(-x)$ are orthogonal
 - (c) y = f(-x) and $y = f^{-1}(x)$ are orthogonal
 - (d) y = f(-x) and $y = f^{-1}(-x)$ are orthogonal
- **18.** Let $f(x) = \int_{0}^{x} e^{t^3} (t^2 1)t^2 (t + 1)^{2011} (t 2)^{2012}$ at (x > 0) then:
 - (a) The number of point of inflections is atleast 1
 - (b) The number of point of inflections is 0
 - (c) The number of point of local maxima is 1
 - (d) The number of point of local minima is 1
- **19.** Let $f(x) = \sin x + ax + b$. Then f(x) = 0 has:
 - (a) only one real root which is positive if a > 1, b < 0
 - (b) only one real root which is negative if a > 1, b > 0
 - (c) only one real root which is negative if a < -1, b < 0
 - (d) only one real root which is positive if a < -1, b < 0
- **20.** Which of the following graphs represent function whose derivatives have a maximum in the interval (0, 1)?









- **21.** Consider $f(x) = \sin^5 x + \cos^5 x 1$, $x \in \left[0, \frac{\pi}{2}\right]$, which of the following is/are correct?
 - (a) f is strictly decreasing in $\left[0, \frac{\pi}{4}\right]$
 - (b) f is strictly increasing in $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
 - (c) There exist a number 'c' in $\left(0, \frac{\pi}{2}\right)$ such that f'(c) = 0
 - (d) The equation f(x) = 0 has only two roots in $\left[0, \frac{\pi}{2}\right]$
- **22.** Let $f(x) = \begin{bmatrix} x^{2\alpha+1} \ln x & ; & x > 0 \\ 0 & ; & x = 0 \end{bmatrix}$

If f(x) satisfies rolle's theorem in interval [0, 1], then α can be :

- (a) $-\frac{1}{2}$
- (b) $-\frac{1}{3}$
- (c) $-\frac{1}{4}$
- (d) -1
- **23.** Which of the following is/are true for the function $f(x) = \int_{0}^{x} \frac{\cos t}{t} dt \, (x > 0)$?
 - (a) f(x) is monotonically increasing in $\left((4n-1)\frac{\pi}{2},(4n+1)\frac{\pi}{2}\right) \forall n \in \mathbb{N}$
 - (b) f(x) has a local minima at $x = (4n-1)\frac{\pi}{2} \ \forall \ n \in \mathbb{N}$
 - (c) The points of inflection of the curve y = f(x) lie on the curve $x \tan x + 1 = 0$
 - (d) Number of critical points of y = f(x) in $(0, 10\pi)$ are 19
- **24.** Let $F(x) = (f(x))^2 + (f'(x))^2$, F(0) = 6, where f(x) is a thrice differentiable function such that $|f(x)| \le 1 \ \forall \ x \in [-1, 1]$, then choose the correct statement(s)
 - (a) there is at least one point in each of the intervals (-1, 0) and (0, 1) where $|f'(x)| \le 2$
 - (b) there is at least one point in each of the intervals (-1, 0) and (0, 1) where $F(x) \le 5$
 - (c) there is no point of local maxima of F(x) in (-1, 1)
 - (d) for some $c \in (-1, 1)$, $F(c) \ge 6$, F'(c) = 0 and $F''(c) \le 0$

25. Let
$$f(x) = \begin{cases} x^3 + x^2 - 10x; & -1 \le x < 0 \\ \sin x; & 0 \le x < \frac{\pi}{2} \\ 1 + \cos x; & \frac{\pi}{2} \le x \le \pi \end{cases}$$

then f(x) has:

- (a) local maximum at $x = \frac{\pi}{2}$
- (b) local minimum at $x = \frac{\pi}{2}$
- (c) absolute maximum at x = 0
- (d) absolute maximum at x = -1
- **26.** Minimum distance between the curves $y^2 = x 1$ and $x^2 = y 1$ is equal to :

(a)
$$\frac{\sqrt{2}}{4}$$

(b)
$$\frac{3\sqrt{2}}{4}$$

(a)
$$\frac{\sqrt{2}}{4}$$
 (b) $\frac{3\sqrt{2}}{4}$ (c) $\frac{5\sqrt{2}}{4}$

(d)
$$\frac{7\sqrt{2}}{4}$$

- **27.** For the equation $\frac{e^{-x}}{1+x} = \lambda$ which of the following statement(s) is/are correct?
 - (a) When $\lambda \in (0, \infty)$ equation has 2 real and distinct roots
 - (b) When $\lambda \in (-\infty, -e^2)$ equation has 2 real and distinct roots
 - (c) When $\lambda \in (0, \infty)$ equation has 1 real root
 - (d) When $\lambda \in (-e, 0)$ euqation has no real root
- **28.** If y = mx + 5 is a tangent to the curve $x^3y^3 = ax^3 + by^3$ at P(1, 2), then

(a)
$$a+b=\frac{18}{5}$$

(b)
$$a > 1$$

(b)
$$a > b$$
 (c) $a < b$

(d)
$$a+b=\frac{19}{5}$$

29. If
$$(f(x)-1)(x^2+x+1)^2-(f(x)+1)(x^4+x^2+1)=0$$

 $\forall x \in R - \{0\}$ and $f(x) \neq \pm 1$, then which of the following statement(s) is/are correct?

(a)
$$|f(x)| \ge 2 \forall x \in R - \{0\}$$

- (b) f(x) has a local maximum at x = -1
- (c) f(x) has a local minimum at x = 1
- (d) $\int_{-\pi}^{\pi} (\cos x) f(x) dx = 0$

Answers

1.	(c, d)	2.	(a, c, d)	3.	(a, c)	4.	(a, c)	5.	(a, b, c, d)	6.	(b, c, d)
7.	(c, d)	8.	(b, d)	9.	(a, b, c, d)	10.	(a, c)	11.	(a, d)	12.	(c, d)
13.	(a, d)	14.	(b, c, d)	15.	(a, d)	16.	(b, c)	17.	(b, c)	18.	(a, d)
19.	(a, b, c)	20.	(a, b)	21.	(a, b, c, d)	22.	(b, c)	23.	(a, b, c)	24.	(a, b, d)
25.	(a, d)	26.	(b)	27.	(b, c, d)	28.	(a, d)	29.	(a, b, c, d)		

1

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let y = f(x) such that xy = x + y + 1, $x \in R - \{1\}$ and g(x) = xf(x)

- 1. The minimum value of g(x) is:
 - (a) $3-\sqrt{2}$
- (b) $3 + \sqrt{2}$
- (c) $3-2\sqrt{2}$
- (d) $3 + 2\sqrt{2}$
- 2. There exists two values of x, x_1 and x_2 where $g'(x) = \frac{1}{2}$, then $|x_1| + |x_2| =$
 - (a) 1
- (b) 2
- (c) 4
- (d) 5

Paragraph for Question Nos. 3 to 5

Let
$$f(x) = \begin{bmatrix} 1-x & ; & 0 \le x \le 1 \\ 0 & ; & 1 < x \le 2 \text{ and } g(x) = \int_{0}^{x} f(t) dt. \\ (2-x)^{2} & ; & 2 < x \le 3 \end{bmatrix}$$

Let the tangent to the curve y = g(x) at point P whose abscissa is $\frac{5}{2}$ cuts x-axis in point Q.

Let the perpendicular from point Q on x-axis meets the curve y = g(x) in point R.

- 3. g(1) =
 - (a) 0
- (b) $\frac{1}{2}$
- (c) 1
- (d) 2
- **4.** Equation of tangent to the curve y = g(x) at P is :
 - (a) 3y = 12x + 1
- (b) 3y = 12x 1
- (c) 12y = 3x 1
- (d) 12y = 3x + 1
- **5.** If ' θ ' be the angle between tangents to the curve y = g(x) at point P and R; then $\tan \theta$ equals to:
 - (a) $\frac{5}{6}$
- (b) $\frac{5}{14}$
- (c) $\frac{5}{7}$
- (d) $\frac{5}{12}$

Paragraph for Question Nos. 6 to 8

Let $f(x) < 0 \ \forall \ x \in (-\infty, 0)$ and $f(x) > 0 \ \forall \ x \in (0, \infty)$ also f(0) = 0. Again $f'(x) < 0 \ \forall \ x \in (-\infty, -1)$ and $f'(x) > 0 \ \forall \ x \in (-1, \infty)$ also f'(-1) = 0 given $\lim_{x \to -\infty} f(x) = 0$ and $\lim_{x \to \infty} f(x) = \infty$ and function is twice differentiable.

- **6.** If $f''(x) > 0 \forall x \in (-1, \infty)$ and f'(0) = 1 then number of solutions of equation f(x) = x is:
 - (a) 2
- (b) 3
- (c) 4
- (d) None of these
- 7. If $f''(x) < 0 \ \forall \ x \in (0, \infty)$ and f'(0) = 1 then number of solutions of equation $f(x) = x^2$ is:
 - (a) 1
- (b) 2
- (c) 3
- (d) 4

8. The minimum number of points where f''(x) is zero is :

(a) 1

(b) 2

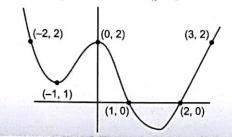
(c) 3

(d) 4

Paragraph for Question Nos. 9 to 11

In the given figure graph of:

$$y = p(x) = x^{n} + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$$
 is given.



9. The product of all imaginary roots of p(x) = 0 is :

(c)
$$-1/2$$

(d) none of these

10. If p(x) + k = 0 has 4 distinct real roots $\alpha, \beta, \gamma, \delta$ then $[\alpha] + [\beta] + [\gamma] + [\delta]$, (where $[\cdot]$ denotes greatest integer function) is equal to :

$$(a) -1$$

(b)
$$-2$$

11. The minimum number of real roots of equation $(p'(x))^2 + p(x)p''(x) = 0$ are :

Paragraph for Question Nos. 12 to 14

The differentiable function y = f(x) has a property that the chord joining any two points $A(x_1, f(x_1))$ and $B(x_2, f(x_2))$ always intersects y-axis at $(0, 2x_1x_2)$. Given that f(1) = -1, then:

12. $\int_0^{1/2} f(x) dx$ is equal to :

(a)
$$\frac{1}{6}$$

(b)
$$\frac{1}{8}$$

(c)
$$\frac{1}{12}$$

(d)
$$\frac{1}{24}$$

13. The largest interval in which f(x) is monotonically increasing, is:

(a)
$$\left(-\infty,\frac{1}{2}\right]$$

(b)
$$\left[\frac{-1}{2},\infty\right)$$

(c)
$$\left(-\infty,\frac{1}{4}\right]$$

(d)
$$\left[\frac{-1}{4}, \infty\right)$$

14. In which of the following intervals, the Rolle's theorem is applicable to the function F(x) = f(x) + x?

Paragraph for Question Nos. 15 to 16

Let $f(x) = 1 + \int_{0}^{1} (xe^{y} + ye^{x}) f(y) dy$ where x and y are independent variables.

- **15.** If complete solution set of 'x' for which function h(x) = f(x) + 3x is strictly increasing is $(-\infty, k)$ then $\left[\frac{4}{3}e^k\right]$ equals to : (where $[\cdot]$ denotes greatest integer function):
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- **16.** If acute angle of intersection of the curves $\frac{x}{2} + \frac{y}{3} + \frac{1}{3} = 0$ and y = f(x) be θ then $\tan \theta$ equals to:
 - (a) $\frac{8}{25}$
- (b) $\frac{16}{25}$
- (c) $\frac{14}{25}$
- (d) $\frac{4}{5}$

1	1							A	nsv	ver	S	market of the							1
1.	(d)	2.	(c)	3.	(b)	4.	(c)	5.	(b)	6.	(d)	7.	(b)	8.	(a)	9.	(d)	10.	(a)
100	(b)	10	(d)	19.	(c)	14.	(b)	15.	(0)	16.	(a)					-			

Exercise-4 : Matching Type Problems

1. Column-I gives pair of curves and column-II gives the angle θ between the curves at their intersection point.

	Column-l		Column-II
(A)	$y = \sin x, y = \cos x$	(P)	$\frac{\pi}{4}$
(B)	$x^2 = 4y, y = \frac{8}{x^2 + 4}$	(Q)	$\frac{\pi}{2}$
(C)	$\frac{x^2}{18} + \frac{y^2}{8} = 1, x^2 - y^2 = 5$	(R)	tan ⁻¹ 3
(D)	$xy = 1, x^2 - y^2 = 5$	(S)	tan ⁻¹ 5
		(T)	$\tan^{-1}(2\sqrt{2})$

2.

	Column-l	Column-II			
(A)	$(\sin^{-1} x)^{\cos^{-1} x} - (\cos^{-1} x)^{\sin^{-1} x} \forall x \in (\cos 1, \sin 1)$	(P)	Always positive		
(B)	$(\cos x)^{\sin x} - (\sin x)^{\cos x} \forall x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$	(Q)	Always negative		
(C)	$(\sin x)^{\sin x} - (\cos x)^{\sin x} \ \forall \ x \in \left(0, \frac{\pi}{2}\right)$	(R)	May be positive or negative for some values of <i>x</i>		
(D)	$(\ln(\ln x))^{\ln(\ln x)} - (\ln x)^{\ln x} \ \forall \ x \in (e^e, \infty)$	(S)	May result in zero for some of values of x		
		(T)	Indeterminate		

3. Let
$$f(x) = \frac{x^3 - 4}{(x - 1)^3} \forall x \neq 1, \ g(x) = \frac{x^4 - 2x^2}{4} \ \forall \ x \in R, h(x) \frac{x^3 + 4}{(x + 1)^3} \ \forall \ x \neq -1,$$

	Column-l	Column-II				
(A)	The number of possible distinct real roots of equation $f(x) = c$ where $c \ge 4$ can be	(P)	0			
(B)	The number of possible distinct real roots of equation $g(x) = c$, where $c \ge 0$ can be	(Q)	1			
(C)	The number of possible distinct real roots of equation $h(x) = c$, where $c \ge 1$ can be	(R)	2			

cation	of Derivatives			
(D)	The number of possible distinct real roots of equation $g(x) = c$ where $-1 < c < 0$ can be	(S)	3	The same of
		(T)	4	

4

	Column-I		Column-II
	If α , β , γ are roots of $x^3 - 3x^2 + 2x + 4 = 0$ and	(P)	2
	$y = 1 + \frac{\alpha}{x - \alpha} + \frac{\beta x}{(x - \alpha)(x - \beta)} + \frac{\gamma x^2}{(x - \alpha)(x - \beta)(x - \gamma)}$		
	then value of y at $x = 2$ is:		
(B)	If $x^3 + ax + 1 = 0$ and $x^4 + ax + 1 = 0$ have a common roots then the value of $ a $ can be equal to	(Q)	3
(C)	The number of local maximas of the function $x^2 + 4\cos x + 5$ is more than	(R)	4
(D)	If $f(x) = 2 x ^3 + 3x^2 - 12 x + 1$, where $x \in [-1, 2]$ then greatest value of $f(x)$ is more than	(S)	5
	The state of the s	(T)	0

5.

1	Column-l		Column-II
(A)	Maximum value of $f(x) = \log_2 \left(\frac{4}{\sqrt{x+2} + \sqrt{2-x}} \right)$	(P)	0
B)	The value of $\left[4\sum_{n=1}^{\infty}\cot^{-1}\left(1+\sum_{k=1}^{n}2k\right)\right]$ =	(Q)	1
	([·] represent greatest integer function)		
(C)	Let $f(x) = x \sin \pi x$, $x > 0$ then number of points in (0, 2) where $f'(x)$ vanishes, is	(R)	2
(D)	$\lim_{x \to 0^+} \left[\frac{x}{e^x - 1} \right] =$	(S)	3
	([·] represent greatest integer function)		

6. Consider the function $f(x) = \frac{\ln x}{8} - ax + x^2$ and $a \ge 0$ is a real constant :

	Column-l	-	Column-II
(A)	f(x) gives a local maxima at	(P)	$a = 1; x = \frac{1}{4}$
(B)	f(x) gives a local minima at	(Q)	$a > 1; x = \frac{a - \sqrt{a^2 - 1}}{4}$
(C)	f(x) gives a point of inflection for	(R)	0 ≤ a < 1
(D)	$f(x)$ is strictly increasing for all $x \in \mathbb{R}^+$	(S)	$a > 1; x = \frac{a + \sqrt{a^2 - 1}}{4}$

7. The function $f(x) = \sqrt{ax^3 + bx^2 + cx + d}$ has its non-zero local minimum and maximum values at x = -2 and x = 2 respectively. If 'a' is one of the root of $x^2 - x - 6 = 0$, then match the following:

1	Column-l		Column-II
(A)	The value of 'a' is	(P)	0
(B)	The value of 'b' is	(Q)	24
(C)	The value of 'c' is	(R)	Greater than 32
(D)	The value of 'd' is	(S)	-2

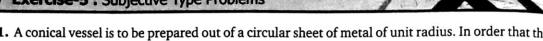
8.

	Column-l		Column-II
(A)	The ratio of altitude to the radius of the cylinder of maximum volume that can be inscribed in a given sphere is	150 Acc 12	$\frac{1}{\sqrt{2}}$
(B)	The ratio of radius to the altitude of the cone of the greatest volume which can be inscribed in a given sphere is		$\sqrt{2}$
(C)	The cone circumscribing the sphere of radius 'r' has the maximum volume if its semi vertical angle is θ , then $33 \sin \theta =$		$\frac{32}{3}$
(D)	The greatest value of x^3y^4 if $2x + 3y = 7$, $x \ge 0$, $y \ge 0$ is	(S)	11

Application of Derivatives Answers 1. $A \rightarrow T$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow Q$ 2. $A \rightarrow R$, S; $B \rightarrow Q$; $C \rightarrow R$, S; $D \rightarrow Q$ 3. $A \rightarrow Q$, R; $B \rightarrow R$, S; $C \rightarrow Q$, R, S; $D \rightarrow P$, R, T4. $A \rightarrow P$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow P$, Q, R, T5. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow R$; $D \rightarrow P$ 6. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$ 7. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$ 8. $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow R$

96

Exercise-5: Subjective Type Problems



- 1. A conical vessel is to be prepared out of a circular sheet of metal of unit radius. In order that the vessel has maximum volume, the sectorial area that must be removed from the sheet is A_1 and the area of the given sheet is A_2 . If $\frac{A_2}{A_1} = m + \sqrt{n}$, where $m, n \in \mathbb{N}$, then m + n is equal to.
- **2.** On [1, e], the least and greatest values of $f(x) = x^2 \ln x$ are m and M respectively, then $[\sqrt{M+m}]$ is : (where [] denotes greatest integer function)
- **3.** If $f(x) = \frac{px}{e^x} \frac{x^2}{2} + x$ is a decreasing function for every $x \le 0$. Find the least value of p^2 .
- **4.** Let $f(x) = \begin{cases} xe^{ax} & \text{, } x \le 0 \\ x + ax^2 x^3 & \text{, } x > 0 \end{cases}$. Where a is a positive constant. The interval in which f'(x) is increasing is $\left[\frac{k}{a}, \frac{a}{l}\right]$. Then k + l is equal to
- **5.** Find sum of all possible values of the real parameter 'b' if the difference between the largest and smallest values of the function $f(x) = x^2 2bx + 1$ in the interval [0, 1] is 4.
- **6.** Let '0' be the angle in radians between the curves $\frac{x^2}{36} + \frac{y^2}{4} = 1$ and $x^2 + y^2 = 12$. If $\theta = \tan^{-1}\left(\frac{a}{\sqrt{3}}\right)$; Find the value of a.
- 7. Let set of all possible values of λ such that $f(x) = e^{2x} (\lambda + 1)e^x + 2x$ is monotonically increasing for $\forall x \in R$ is $(-\infty, k]$. Find the value of k.
- **8.** Let a, b, c and d be non-negative real number such that $a^5 + b^5 \le 1$ and $c^5 + d^5 \le 1$. Find the maximum value of $a^2c^3 + b^2d^3$.
- **9.** There is a point (p, q) on the graph of $f(x) = x^2$ and a point (r, s) on the graph of g(x) = -8/x, where p > 0 and r > 0. If the line through (p, q) and (r, s) is also tangent to both the curves at these points respectively, then find the value of (p + r).
- **10.** $f(x) = \max |2\sin y x|$ where $y \in R$ then determine the minimum value of f(x).
- 11. Let $f(x) = \int_0^x ((a-1)(t^2+t+1)^2-(a+1)(t^4+t^2+1)) dt$. Then the total number of integral values of 'a' for which f'(x) = 0 has no real roots is
- **12.** The number of real roots of the equation $x^{2013} + e^{2014x} = 0$ is
- **13.** Let the maximum value of expression $y = \frac{x^4 x^2}{x^6 + 2x^3 1}$ for x > 1 is $\frac{p}{q}$ where p and q are relatively prime positive integers. Find the value of (p + q).

- **14.** The least positive value of the parameter 'a' for which there exists at least one line that is tangent to the graph of the curve $y = x^3 ax$, at one point and normal to the graph at another point is $\frac{p}{q}$; where p and q are relatively prime positive integers. Find product pq.
- **15.** Let $f(x) = x^2 + 2x t^2$ and f(x) = 0 has two roots $\alpha(t)$ and $\beta(t)(\alpha < \beta)$ where t is a real parameter. Let $I(t) = \int_{\alpha}^{\beta} f(x) dx$. If the maximum value of I(t) be λ and $|\lambda| = \frac{p}{q}$ where p and q are relatively prime positive integers. Find the product (pq).
- 16. A tank contains 100 litres of fresh water. A solution containing 1 gm/litre of salt runs into the tank at the rate of 1 lit/min. The homogenised mixture is pumped out of the tank at the rate of 3 lit/min. If T be the time when the amount of salt in the tank is maximum. Find [T] (where [-] denotes greatest integer function)
- 17. If f(x) is continuous and differentiable in [-3, 9] and $f'(x) \in [-2, 8] \ \forall \ x \in (-3, 9)$. Let N be the number of divisors of the greatest possible value of f(9) f(-3), then find the sum of digits of N.
- **18.** It is given that f(x) is defined on R satisfying f(1) = 1 and for $\forall x \in R$, $f(x+5) \ge f(x) + 5$ and $f(x+1) \le f(x) + 1$. If g(x) = f(x) + 1 x, then g(2002) = f(x) + 1 x.
- 19. The number of normals to the curve $3y^3 = 4x$ which passes through the point (0,1) is
- **20.** Find the number of real root(s) of the equation $ae^x = 1 + x + \frac{x^2}{2}$; where a is positive constant.
- **21.** Let $f(x) = ax + \cos 2x + \sin x + \cos x$ is defined for $\forall x \in R$ and $a \in R$ and is strictly increasing function. If the range of a is $\left[\frac{m}{n}, \infty\right]$, then find the minimum value of (m-n).
- **22.** If p_1 and p_2 are the lengths of the perpendiculars from origin on the tangent and normal drawn to the curve $x^{2/3} + y^{2/3} = 6^{2/3}$ respectively. Find the value of $\sqrt{4p_1^2 + p_2^2}$.

	1					Ansv	vers						1
1.	9	2.	2	3.	1	4.	1	5.	1	6.	2	7.	3
8.	1	9.	5	10.	2	11.	3	12.	1	13.	7	14.	12
15.	12	16.	27	17.	3	18.	1	19.	1	20.	1	21.	9
22.	6					3							

INTEGRATION

Exercise-1: Single Choice Problems

$$\mathbf{1.} \int a^x \left(\ln x + \ln a \cdot \ln \left(\frac{x}{e} \right)^x \right) dx =$$

(a)
$$a^x \ln \left(\frac{e}{x}\right)^{2x} + C$$

(b)
$$a^x \ln\left(\frac{x}{e}\right)^x + C$$

(c)
$$a^x + \ln\left(\frac{x}{e}\right)^x + C$$

(d) None of these

2. The value of:

$$\lim_{n\to\infty}\left(\frac{1}{\sqrt{n}\sqrt{n+1}}+\frac{1}{\sqrt{n}\sqrt{n+2}}+\frac{1}{\sqrt{n}\sqrt{n+3}}+\ldots\ldots+\frac{1}{\sqrt{n}\sqrt{2n}}\right)$$
 is:

(a)
$$\sqrt{2} - 1$$

(b)
$$2(\sqrt{2}-1)$$
 (c) $\sqrt{2}+1$

(c)
$$\sqrt{2} + 1$$

(d)
$$2(\sqrt{2}+1)$$

3. If
$$\int \frac{\sin x}{\sin (x - \alpha)} dx = Ax + B \log \sin (x - \alpha) + C$$
, then value of (A, B) is:

(a)
$$(\sin \alpha, \cos \alpha)$$

(b)
$$(\cos \alpha, \sin \alpha)$$

(c)
$$(-\sin\alpha,\cos\alpha)$$

(c)
$$(-\sin \alpha, \cos \alpha)$$
 (d) $(-\cos \alpha, \sin \alpha)$

4. The value of the integral $\int_{-\infty}^{2} \frac{\log(x^2+2)}{(x+2)^2} dx$ is:

(a)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} + \frac{5}{12} \log 2 - \frac{1}{4} \log 3$$

(a)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} + \frac{5}{12} \log 2 - \frac{1}{4} \log 3$$
 (b) $\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} - \frac{5}{12} \log 2 - \frac{1}{12} \log 3$

(c)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} + \frac{5}{12} \log 2 + \frac{1}{12} \log 3$$
 (d) $\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} - \frac{5}{12} \log 2 + \frac{1}{12} \log 3$

(d)
$$\frac{\sqrt{2}}{3} \tan^{-1} \sqrt{2} - \frac{5}{12} \log 2 + \frac{1}{12} \log 3$$

5. If
$$I_1 = \int_0^1 \frac{1+x^8}{1+x^4} dx$$
 and $I_2 = \int_0^1 \frac{1+x^9}{1+x^3} dx$, then:

(a)
$$I_1 > 1, I_2 < 1$$
 (b) $I_1 < 1, I_2 > 1$

(b)
$$I_1 < 1, I_2 > 1$$

(c)
$$1 < I_1 < I_2$$
 (d) $I_2 < I_1 < 1$

(d)
$$I_2 < I_1 < 1$$

6. Let $f:(0,1)\to(0,1)$ be a differentiable function such that $f'(x)\neq 0$ for all $x\in(0,1)$ and

$$f\left(\frac{1}{2}\right) = \frac{\sqrt{3}}{2}. \text{ Suppose for all } x, \lim_{t \to x} \left(\frac{\int_{0}^{t} \sqrt{1 - (f(s))^2} ds - \int_{0}^{x} \sqrt{1 - (f(s))^2} ds}{f(t) - f(x)} \right) = f(x). \text{ Then the value}$$

of $f\left(\frac{1}{A}\right)$ belongs to:

(a)
$$\left\{ \frac{\sqrt{7}}{4}, \frac{\sqrt{15}}{4} \right\}$$
 (b) $\left\{ \frac{\sqrt{7}}{3}, \frac{\sqrt{15}}{3} \right\}$ (c) $\left\{ \frac{\sqrt{7}}{2}, \frac{\sqrt{15}}{2} \right\}$ (d) $\left\{ \sqrt{7}, \sqrt{15} \right\}$

(b)
$$\left\{ \frac{\sqrt{7}}{3}, \frac{\sqrt{15}}{3} \right\}$$

(c)
$$\left\{ \frac{\sqrt{7}}{2}, \frac{\sqrt{15}}{2} \right\}$$

(d)
$$\{\sqrt{7}, \sqrt{15}\}$$

7. If $f(\theta) = \frac{4}{3}(1 - \cos^6 \theta - \sin^6 \theta)$, then

$$\lim_{n\to\infty} \frac{1}{n} \left[\sqrt{f\left(\frac{1}{n}\right)} + \sqrt{f\left(\frac{2}{n}\right)} + \sqrt{f\left(\frac{3}{n}\right)} + \dots + \sqrt{f\left(\frac{n}{n}\right)} \right] =$$
(a) $\frac{1-\cos 1}{2}$ (b) $1-\cos 2$ (c) $\frac{\sin 2}{2}$ (d) $\frac{1-\cos 2}{2}$

(a)
$$\frac{1-\cos 1}{2}$$

(c)
$$\frac{\sin 2}{2}$$

(d)
$$\frac{1-\cos 2}{2}$$

8. The value of $\int_{0}^{1} \frac{(x^6 - x^3)}{(2x^3 + 1)^3} dx$ is equal to :

(a)
$$-\frac{1}{6}$$

(a)
$$-\frac{1}{6}$$
 (b) $-\frac{1}{12}$ (c) $-\frac{1}{18}$ (d) $-\frac{1}{36}$

(c)
$$-\frac{1}{18}$$

(d)
$$-\frac{1}{36}$$

9.
$$2\int_{0}^{\frac{1}{\sqrt{2}}} \frac{\sin^{-1} x}{x} dx - \int_{0}^{1} \frac{\tan^{-1} x}{x} dx =$$

(a)
$$\frac{\pi}{8} \ln 2$$
 (b) $\frac{\pi}{4} \ln 2$

(b)
$$\frac{\pi}{4} \ln 2$$

(c)
$$\frac{\pi}{2\sqrt{2}} \ln 2$$
 (d) $\frac{\pi}{2} \ln 2$

(d)
$$\frac{\pi}{2} \ln 2$$

10. Let f(x) be a differentiable function such that $f(x) = x^2 + \int_0^x e^{-t} f(x-t) dt$, then $\int_0^x f(x) dx = \int_0^x e^{-t} f(x-t) dt$

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{7}{12}$$

(d)
$$\frac{5}{12}$$

11. If $f'(x) = f(x) + \int_{0}^{1} f(x) dx$ and given f(0) = 1, then $\int f(x) dx$ is equal to :

(a)
$$\frac{2}{3-e}e^x + \left(\frac{3-e}{1-e}\right)x + C$$

(b)
$$\frac{2}{3-e}e^x + \left(\frac{1-e}{3-e}\right)x + C$$

(c)
$$\frac{3}{2-e}e^x + \left(\frac{1+e}{3+e}\right)x + C$$

(d)
$$\frac{2}{2-e}e^x + \left(\frac{1-e}{3+e}\right)x + C$$

(where C is an arbitrary constant.)

12. For any $x \in R$, and f be a continuous function. Let $I_1 = \int_{-2}^{1+\cos^2 x} tf(t(2-t)) dt$, $I_2 = \int_{\sin^2 x}^{1+\cos^2 x} f(t(2-t)) dt$,

then
$$I_1 =$$

- (a) I_2
- (b) $\frac{1}{2}I_2$
- (c) $2I_2$

13. If the integral $\int \frac{5 \tan x \, dx}{\tan x - 2} = x + a \ln |\sin x - 2 \cos x| + C$, then 'a' is equal to:

- (d) -2

14. $\int \frac{(2+\sqrt{x})dx}{(x+1+\sqrt{x})^2}$ is equal to :

(a)
$$\frac{x}{x+\sqrt{x}+1}+C$$

(b)
$$\frac{2x}{x + \sqrt{x} + 1} + C$$

(c)
$$\frac{-2x}{x + \sqrt{x} + 1} + C$$

(d)
$$\frac{-x}{x + \sqrt{x} + 1} + C$$

15. Evaluate $\int \frac{\sqrt[3]{x + \sqrt{2 - x^2}} \left(\sqrt[6]{1 - x\sqrt{2 - x^2}} \right) dx}{\sqrt[3]{1 - x^2}}; x \in (0, 1):$

(a)
$$2^{\frac{1}{6}}x + C$$

(b)
$$2^{\frac{1}{12}}x + C$$

(c)
$$2^{\frac{1}{3}}x + C$$

(d) None of these

16.
$$\int \frac{dx}{\sqrt{1-\tan^2 x}} = \frac{1}{\lambda} \sin^{-1} (\lambda \sin x) + C, \text{ then } \lambda =$$

(a)
$$\sqrt{2}$$

(d) $\sqrt{5}$

(a) $\sqrt{2}$ (b) $\sqrt{2}$ 17. $\int \frac{dx}{\sqrt[3]{x^{5/2}(x+1)^{7/2}}}$ is equal to :

(a)
$$-\left(\frac{x+1}{x}\right)^{1/6} + C$$

(b)
$$6\left(\frac{x+1}{r}\right)^{-1/6} + C$$

$$(c) \left(\frac{x}{x+1}\right)^{5/6} + C$$

(d)
$$-\left(\frac{x}{x+1}\right)^{5/6} + C$$

18. If $I_n = \int (\sin x)^n dx$; $n \in \mathbb{N}$, then $5I_4 - 6I_6$ is equal to :

(a)
$$\sin x \cdot (\cos x)^5 + C$$

(b)
$$\sin 2x \cos 2x + C$$

(c)
$$\frac{\sin 2x}{8} [1 + \cos^2 2x - 2\cos 2x] + C$$

(d)
$$\frac{\sin 2x}{8} [1 + \cos^2 2x + 2\cos 2x] + C$$

19. $\int \frac{x^2}{(a+bx)^2} dx$ equals to:

(a)
$$\frac{1}{b^3} \left(a + bx - a \ln |a + bx| - \frac{a^2}{a + bx} \right) + C$$

(a)
$$\frac{1}{b^3} \left(a + bx - a \ln|a + bx| - \frac{a^2}{a + bx} \right) + C$$
 (b) $\frac{1}{b^3} \left(a + bx - 2a \ln|a + bx| - \frac{a^2}{a + bx} \right) + C$

(c)
$$\frac{1}{b^3} \left(a + bx + 2a \ln|a + bx| - \frac{a^2}{a + bx} \right) + C$$
 (d) $\frac{1}{b^3} \left(a + bx - 2a \ln|a + ax| - \frac{a^2}{a + bx} \right) + C$

(d)
$$\frac{1}{b^3} \left(a + bx - 2a \ln |a + ax| - \frac{a^2}{a + bx} \right) + C$$

20.
$$\int \frac{8x^{43} + 13x^{38}}{(x^{13} + x^5 + 1)^4} dx =$$

(a)
$$\frac{x^{39}}{3(x^{13}+x^5+1)^3}+C$$

(b)
$$\frac{x^{39}}{(x^{13}+x^5+1)^3}+C$$

(c)
$$\frac{x^{39}}{5(x^{13}+x^5+1)^5}+C$$

(d) None of these

21.
$$\int \left(\frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{10\cos^2 x + 5\cos x \cos 3x + \cos x \cos 5x} \right) dx = f(x) + C, \text{ then } f(10) \text{ is equal to :}$$
(a) 20 (b) 10 (c) $2\sin 10$ (d) $2\cos 10$

(d) 2cos10

22.
$$\int (1+x-x^{-1})e^{x+x^{-1}}dx =$$

(a)
$$(x+1)e^{x+x^{-1}}+C$$

(b)
$$(x-1)e^{x+x^{-1}}+C$$

(c)
$$-xe^{x+x^{-1}} + C$$

(d)
$$xe^{x+x^{-1}} + C$$

23. If
$$\int e^x \left(\frac{2 \tan x}{1 + \tan x} + \csc^2 \left(x + \frac{\pi}{4} \right) \right) dx = e^x \cdot g(x) + K$$
, then $g\left(\frac{5\pi}{4} \right) = \frac{\pi}{4}$

$$(c)$$
 $-$

(d) 2

24.
$$\int e^{x \sin x + \cos x} \left(\frac{x^4 \cos^3 x - x \sin x + \cos x}{x^2 \cos^2 x} \right) dx =$$

(a)
$$e^{x \sin x + \cos x} \left(x - \frac{1}{\cos x} \right) + C$$

(b)
$$e^{x \sin x + \cos x} \left(x - \frac{1}{x \cos x} \right) + C$$

(c)
$$e^{x \sin x + \cos x} \left(1 - \frac{1}{x \cos x} \right) + C$$

(b)
$$e^{x \sin x + \cos x} \left(x - \frac{1}{x \cos x} \right) + C$$

(d) $e^{x \sin x + \cos x} \left(1 - \frac{x}{\cos x} \right) + C$

25. The value of the definite integral
$$\int_{0}^{1} \frac{1+x+\sqrt{x+x^2} dx}{\sqrt{x}+\sqrt{1+x}} dx$$
 is :

(a)
$$\frac{1}{3}(2^{1/2}-1)$$

(b)
$$\frac{2}{3}(2^{1/2}-1)$$

(c)
$$\frac{2}{3}(2^{3/2}-1)$$

(d)
$$\frac{1}{3}(2^{3/2}-1)$$

26.
$$\int x^{x^2+1} (2\ln x + 1) dx$$

(a)
$$x^{2x} + 0$$

(b)
$$x^2 \ln x + 0$$

(c)
$$x^{(x^x)} + C$$

(d)
$$(x^x)^x + 0$$

27. If
$$\int \frac{\csc^2 x - 2010}{\cos^{2010} x} dx = -\frac{f(x)}{(g(x))^{2010}} + C$$
; where $f\left(\frac{\pi}{4}\right) = 1$; then the number of solutions of the equation $\frac{f(x)}{g(x)} = \{x\}$ in $[0, 2\pi]$ is/are: (where $\{\cdot\}$ represents fractional part function)

28.
$$\int x^x \left((\ln x)^2 + \ln x + \frac{1}{x} \right) dx$$
 is equal to :

(a)
$$x^{x} \left((\ln x)^{2} - \frac{1}{x} \right) + C$$

(b)
$$x^{x}(\ln x - x) + C$$

(c)
$$x^x \frac{(\ln x)^2}{2} + C$$

(d)
$$x^x \ln x + C$$

29. If
$$I = \int \frac{x^2 - 1}{x^3 \sqrt{2x^4 - 2x^2 + 1}}$$
 is equal to :

(a)
$$\frac{\sqrt{2x^4 - 2x^2 + 1}}{x^2} + C$$

(b)
$$\frac{\sqrt{2x^4-2x^2+1}}{x}+C$$

(c)
$$\frac{\sqrt{2x^4-2x^2+1}}{x}+C$$

(d)
$$\frac{\sqrt{2x^4 - 2x^2 + 1}}{2x^2} + C$$

30.
$$I = \int \left(\frac{\ln x - 1}{(\ln x)^2 + 1}\right)^2 dx$$
 is equal to :

(a)
$$\frac{x}{x^2+1}+0$$

(b)
$$\frac{\ln x}{(\ln x)^2 + 1} + 0$$

(c)
$$\frac{x}{1+(\ln x)^2}+C$$

(a)
$$\frac{x}{x^2+1} + C$$
 (b) $\frac{\ln x}{(\ln x)^2+1} + C$ (c) $\frac{x}{1+(\ln x)^2} + C$ (d) $e^x \left(\frac{x}{x^2+1}\right) + C$

31.
$$I = \int \frac{dx}{\sqrt[4]{(x-1)^3(x+2)^5}} = k \sqrt[4]{\frac{x-1}{x+2}} + C$$
, then 'k' is equal to:

(a)
$$\frac{1}{3}$$

(b)
$$\frac{2}{3}$$

(c)
$$\frac{3}{4}$$

(d)
$$\frac{4}{3}$$

32.
$$\int \frac{1-x^7}{x(1+x^7)} dx = P \log|x| + Q \log|x^7| + 1| + C, \text{ then } :$$

(a)
$$2P - 7Q = 0$$

(b)
$$2P + 7Q = 0$$

(c)
$$7P + 2O = 0$$

(d)
$$7P - 20 = 1$$

(a)
$$2P - 7Q = 0$$
 (b) $2P + 7Q = 0$ (c) $7P + 2Q = 0$ (d) $7P - 2Q = 1$
33. $I = \int \frac{\sin^8 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx$ is equal to :

(a)
$$\sin 2x + C$$

(b)
$$\frac{\sin 2x}{2} + C$$

(a)
$$\sin 2x + C$$
 (b) $\frac{\sin 2x}{2} + C$ (c) $\frac{-\sin 2x}{2} + C$ (d) $-2\sin 2x + C$

(d)
$$-2\sin 2x + C$$

Indefinite and Definite Integration

103

34.
$$I = \int \frac{(\sin 2x)^{1/3} d(\tan^{1/3} x)}{\sin^{2/3} x + \cos^{2/3} x} =$$

(a)
$$\frac{1}{2^{2/3}} \ln (1 + \tan^{1/3} x) + C$$

(b)
$$\ln(1 + \tan^{2/3} x) + C$$

(c)
$$2^{1/3} \ln(1 + \tan^{2/3} x) + C$$

(d)
$$\frac{1}{2^{2/3}} \ln (1 + \tan^{2/3} x) + C$$

35.
$$\int \sqrt{\frac{(2012)^{2x}}{1-(2012)^{2x}}} (2012)^{\sin^{-1}(2012)^x} dx =$$

(a)
$$(\log_{2012} e)^2 (2012)^{\sin^{-1}(2012)^x} + C$$

(b)
$$(\log_{2012} e)^2 (2012)^{x + \sin^{-1}(2012)^x} + C$$

(c)
$$(\log_{2012} e)^2 (2012)^{\sin^{-1}(2012)^x} + C$$

(d)
$$\frac{(2012)^{\sin^{-1}(2012)^x}}{(\log_{2012} e)^2} + C$$

(where C denotes arbitrary constant.)

36.
$$\int \frac{(x+2) dx}{(x^2+3x+3)\sqrt{x+1}}$$
 is equal to :

(a)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3(x+1)}} \right) + C$$

(b)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\sqrt{\frac{x}{3(x+1)}} \right) + C$$

(c)
$$\frac{1}{\sqrt{3}} \tan^{-1} \left(\frac{\sqrt{x}}{3(x+1)} \right) + C$$

(d)
$$\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{x}{\sqrt{3}(x+1)} \right) + C$$

(where C is arbitrary constant.)

37.
$$\int \left(\frac{f(x)g'(x) - f'(x)g(x)}{f(x)g(x)} \right) (\log(g(x)) - \log(f(x))) dx \text{ is equal to :}$$

(a)
$$\log \left(\frac{g(x)}{f(x)} \right) + C$$

(b)
$$\frac{1}{2} \left(\frac{g(x)}{f(x)} \right)^2 + C$$

(c)
$$\frac{1}{2} \left(\log \left(\frac{g(x)}{f(x)} \right) \right)^2 + C$$

(d)
$$\log \left(\left(\frac{g(x)}{f(x)} \right)^2 \right) + C$$

$$38. \int \left(\int e^x \left(\ln x + \frac{2}{x} - \frac{1}{x^2} \right) dx \right) dx =$$

(a)
$$e^x \ln x + C_1 x + C_2$$

(b)
$$e^x \ln x + \frac{1}{x} + C_1 x + C_2$$

(c)
$$\frac{\ln x}{x} + C_1 x + C_2$$

(d) None of these

	1
39.	Maximum value of the function $f(x) = \pi^2 \int t \sin(x + \pi t) dt$ over all real number x
	Ô

(a) $\sqrt{\pi^2 + 1}$ (b) $\sqrt{\pi^2 + 2}$ (c) $\sqrt{\pi^2 + 3}$ (d) $\sqrt{\pi^2 + 4}$ **40.** Let 'f' is a function, continuous on [0, 1] such that $f(x) \le \sqrt{5} \ \forall \ x \in [0, 1]$ and $f(x) \le \frac{2}{x} \ \forall \ x \in [\frac{1}{2}, 1]$ then the smallest 'a' for which $\int_{0}^{1} f(x) dx \le a$ holds for all 'f' is:

(b) $\frac{\sqrt{5}}{2} + 2 \ln 2$ (c) $2 + \ln \left(\frac{\sqrt{5}}{2} \right)$ (d) $2 + 2 \ln \left(\frac{\sqrt{5}}{2} \right)$

41. Let $I_n = \int_{1}^{e^{-1}} (\ln x)^n d(x^2)$, then the value of $2I_n + nI_{n-1}$ equals to :

(a) 0 (b) $2e^2$ (c) e^2 (d) 1 **42.** Let a function $f: R \to R$ be defined as $f(x) = x + \sin x$. The value of $\int_{0}^{2\pi} f^{-1}(x) dx$ will be:

(b) $2\pi^2 - 2$ (c) $2\pi^2 + 2$ (d) π^2

43. The value of the definite integral $\int_{-1}^{1} e^{-x^4} \left(2 + \ln\left(x + \sqrt{x^2 + 1}\right) + 5x^3 - 8x^4 \right) dx$ is equal to :

(a) 4e

44. $\int_{-10}^{0} \frac{\left| \frac{2[x]}{3x - [x]} \right|}{\frac{2[x]}{3x - [x]}} dx$ is equal to (where [*] denotes greatest integer function.)

(b) $\frac{1}{2}$

(c) 0

(d) None of these

45. If $f(x) = \frac{x}{1 + (\ln x)(\ln x) \dots \infty} \forall x \in [1, \infty)$ then $\int_{1}^{\infty} f(x) dx$ equals is :

(a) $\frac{e^2-1}{2}$ (b) $\frac{e^2+1}{2}$ (c) $\frac{e^2-2e}{2}$

(d) None of these

46. $\int_{0}^{7} \frac{(y^2 - 4y + 5)\sin(y - 2)}{(2y^2 - 8y + 11)} dy$ is equal to:

(c) -2

(d) None of these

47. Let $\frac{d}{dx}F(x) = \left(\frac{e^{\sin x}}{x}\right)$, x > 0. If $\int_{-\infty}^{4} \frac{3}{x}e^{\sin x^3} dx = F(k) - F(1)$, then one of the possible values of k,

- (a) 15
- (d) 64

$$\int_{0}^{\pi+ne} x^{2}e^{-x^{2}}dx - \int_{0}^{\pi} x^{2}e^{-x^{2}}dx$$

(a) 15 (b) 16 (c) 6 $\int_{x+he^{-1/h}}^{x+he^{-1/h}} x^2 e^{-x^2} dx - \int_{0}^{\pi} x^2 e^{-x^2} dx$ 48. Value of $\lim_{h\to 0} \frac{\int_{0}^{x+he^{-1/h}} x^2 e^{-x^2} dx}{he^{-1/h}}$ is equal to:

- (a) $\pi(1-\pi^2)e^{-\pi^2}$ (b) $2\pi(1-\pi^2)e^{-\pi^2}$ (c) $\pi(1-\pi)e^{-\pi}$

49. Let $f: \mathbb{R}^+ \to \mathbb{R}$ be a differentiable function with f(1) = 3 and satisfying :

$$\int_{1}^{xy} f(t) dt = y \int_{1}^{x} f(t) dt + x \int_{1}^{y} f(t) dt \ \forall \ x, y \in \mathbb{R}^{+}, \text{ then } f(e) =$$

50. If [-] denotes the greatest integer function, then the integral $\int_{0}^{\pi/2} \frac{e^{\sin x - [\sin x]} d(\sin^2 x - [\sin^2 x])}{\sin x - [\sin x]}$ is

 λ , then $[\lambda - 1]$ is equal to:

- (d) 3

51. Calculate the reciprocal of the limit $\lim_{x\to\infty}\int_{0}^{x}xe^{t^2-x^2}dt$

- (a) 0

(a) 0 (b) 1 (c) 2 (d) 3 **52.** Let $L = \lim_{n \to \infty} \left(\frac{(2 \cdot 1 + n)}{1^2 + n \cdot 1 + n^2} + \frac{(2 \cdot 2 + n)}{2^2 + n \cdot 2 + n^2} + \frac{(2 \cdot 3 + n)}{3^2 + n \cdot 3 + n^2} + \dots + \frac{(2 \cdot n + n)}{3n^2} \right)$ then value

- (a) 2

- (d) $\frac{3}{2}$

53. The value of the definite integral $\int_{0}^{2} \left(\sqrt{1+x^3} + \sqrt[3]{x^2+2x} \right) dx$ is :

- (a) 4
- (b) 5
- (d) 7

54. The value of the definite integral $\int_{-\infty}^{\infty} \frac{\ln x}{x^2 + 4} dx$ is :

(a) $\frac{\pi \ln 3}{2}$

(b) $\frac{\pi \ln 2}{3}$

(c) $\frac{\pi \ln 2}{4}$

(d) $\frac{\pi \ln 4}{3}$

55. The value of the definite integral $\int_{0}^{10} ((x-5)+(x-5)^2+(x-5)^3) dx$ is :

(a)
$$\frac{125}{3}$$

(b)
$$\frac{250}{3}$$

(c)
$$\frac{125}{6}$$

(d)
$$\frac{250}{4}$$

56. The value of definite integral $\int_{0}^{\infty} \frac{dx}{(1+x^9)(1+x^2)}$ equals to :

(a)
$$\frac{\pi}{16}$$

(b)
$$\frac{\pi}{8}$$

(c)
$$\frac{\pi}{4}$$

(d)
$$\frac{\pi}{2}$$

57. The value of the definite integral $\int_{0}^{\pi/2} \left(\frac{1 + \sin 3x}{1 + 2\sin x} \right) dx$ equals to :

(a)
$$\frac{\pi}{2}$$

(c)
$$\frac{1}{2}$$

(d)
$$\frac{\pi}{4}$$

58. The value of $\lim_{x \to \infty} \frac{\int_{0}^{x} (\tan^{-1} x)^{2} dx}{\sqrt{x^{2} + 1}} =$

(a)
$$\frac{\pi^2}{16}$$

(b)
$$\frac{\pi^2}{4}$$

(c)
$$\frac{\pi^2}{2}$$

(d) None of these

59. If
$$\int_{0}^{1} \left(\sum_{r=1}^{2013} \frac{x}{x^2 + r^2} \right) \left(\prod_{r=1}^{2013} (x^2 + r^2) \right) dx = \frac{1}{2} \left[\left(\prod_{r=1}^{2013} (1 + r^2) \right) - k^2 \right]$$

then k =

(c)
$$2013^2$$

(d) 2013²⁰¹³

60.
$$f(x) = 2x - \tan^{-1} x - \ln(x + \sqrt{1 + x^2})$$

- (a) strictly increases $\forall x \in R$
- (b) strictly increases only in (0, ∞)
- (c) strictly decreases $\forall x \in R$
- (d) strictly decreases in $(0, \infty)$ and strictly increases in $(-\infty, 0)$

61. The value of the definite integral $\int_{0}^{\pi/2} \frac{dx}{\tan x + \cot x + \csc x + \sec x}$ is:

(a)
$$1 - \frac{\pi}{4}$$

(b)
$$\frac{\pi}{4} + 1$$

(b)
$$\frac{\pi}{4} + 1$$
 (c) $\pi + \frac{1}{4}$

(d) None of these

62. The value of the definite integral $\int_{3}^{7} \frac{\cos x^2}{\cos x^2 + \cos(10 - x)^2} dx$ is:

- (a) 2
- (b) 1
- (d) None of these

63. The value of the integral $\int_{-1}^{e^2} \left| \frac{\ln x}{x} \right| dx$ is :

- (c) 3
- (d) 5

64. The value of $\lim_{x \to \frac{\pi}{4}} \frac{\int_{-2}^{\cos c^2 x} tg(t) dt}{x^2 - \frac{\pi^2}{16}}$ is:

- (a) $\frac{2}{\pi}g(2)$
- (b) $-\frac{4}{\pi}g(2)$ (c) $-\frac{16}{\pi}g(2)$ (d) -4g(2)

65. The value of $\lim_{n\to\infty}\sum_{k=1}^n\frac{n-k}{n^2}\cos\frac{4k}{n}$ equals:

- (a) $\frac{1}{4}\sin 4 + \frac{1}{16}\cos 4 \frac{1}{16}$
- (b) $\frac{1}{4}\sin 4 \frac{1}{16}\cos 4 + \frac{1}{16}$

(c) $\frac{1}{16}(1-\sin 4)$

(d) $\frac{1}{16}(1-\cos 4)$

66. For each positive integer n, define a function f_n on [0, 1] as follows:

$$f_n(x) = \begin{cases} 0 & \text{if } x = 0\\ \sin\frac{\pi}{2n} & \text{if } 0 < x \le \frac{1}{n}\\ \sin\frac{2\pi}{2n} & \text{if } \frac{1}{n} < x \le \frac{2}{n}\\ \sin\frac{3\pi}{2n} & \text{if } \frac{2}{n} < x \le \frac{3}{n}\\ \sin\frac{n\pi}{2n} & \text{if } \frac{n-1}{n} < x \le 1 \end{cases}$$

Then the value of $\lim_{n\to\infty} \int_0^x f_n(x) dx$ is:

(a) π

(c) $\frac{1}{\pi}$

(d) $\frac{2}{\pi}$

67. Let n be a positive integer, then

$$\int_{0}^{n+1} \min\{|x-1|, |x-2|, |x-3|, \dots, |x-n|\} dx \text{ equals}$$

- (a) $\frac{(n+1)}{4}$ (b) $\frac{(n+2)}{4}$ (c) $\frac{(n+3)}{4}$

68. For positive integers $k = 1, 2, 3, \ldots, n$, let S_k denotes the area of $\triangle AOB_k$ (where 'O' is origin) such that $\angle AOB_k = \frac{k\pi}{2n}$, OA = 1 and $OB_k = k$. The value of the $\lim_{n \to \infty} \frac{1}{n^2} \sum_{k=1}^{n} S_k$ is:

- (d) $\frac{1}{2\pi^2}$

69. If $A = \int_{0}^{1} \prod_{r=1}^{2014} (r-x) dx$ and $B = \int_{0}^{1} \prod_{r=0}^{2013} (r+x) dx$, then:

- (d) A = B

(a) A = 2B (b) 2A = B (c) A + B = 0 **70.** If $f(x) = \left[\frac{x}{120} + \frac{x^3}{30}\right]$ defined in [0, 3], then $\int_{0}^{1} (f(x) + 2) dx = 0$

(where [.] denotes greatest integer function)

- (d) 4

71. If $f(x) = \int_{0}^{g(x)} \frac{dt}{\sqrt{1+t^3}}$, $g(x) = \int_{0}^{\cos x} (1+\sin t)^2 dt$, then the value of $f'(\frac{\pi}{2})$ is equal to :

- (a) 1
- (b) -1
- (d) $\frac{1}{2}$

72. Let $f(x) = \frac{1}{x^2} \int_{0}^{x} (4t^2 - 2f'(t)) dt$, find 9f'(4)

- (a) 16

- (d) 32

73. Evaluate $\lim_{n\to\infty} \left(\frac{1^2}{n^3 + 1^3} + \frac{2^2}{n^3 + 2^3} + \frac{3^2}{n^3 + 3^3} + \dots + \frac{4}{9n} \right)$

- (c) $\frac{\ln 4}{2}$
- (d) $\frac{\ln 6}{3}$

74. The value of $\int_{0}^{2\pi} \cos^{-1} \left(\frac{1 - \tan^{2} \frac{x}{2}}{1 + \tan^{2} \frac{x}{2}} \right) dx$ is :

- (a) π^2
- (b) $\frac{\pi^2}{2}$
- (c) $2\pi^2$
- (d) π^3

75. Given a function 'g' continuous everywhere such that $\int g(t) dt = 2$ and g(1) = 5.

If $f(x) = \frac{1}{2} \int_{0}^{x} (x-t)^2 g(t) dt$, then the value of f'''(1) - f''(1) is:

- (d) 3

76. If $\int_{0}^{\pi} \frac{x^3 \cos^4 x \sin^2 x}{\pi^2 - 3\pi x + 3x^2} dx = \lambda \int_{0}^{\pi/2} \sin^2 x dx$, then the value of λ is:

- (d) $\frac{\pi}{2}$

77. $\int_{0}^{\sqrt{3}} \left(\frac{1}{2} \frac{d}{dx} \left(\tan^{-1} \frac{2x}{1-x^2} \right) \right) dx \text{ equals to } :$

- (b) $-\frac{\pi}{6}$
- (d) None of these

78. Let $y = \{x\}^{[x]}$ then the value of $\int_{0}^{3} y \, dx$ equals to :

(where {·} and [·] denote fractional part and greatest integer function respectively.)

79. $\int_{-\infty}^{1} \frac{\tan^{-1} x}{x} dx =$

- (a) $\int_{-\pi}^{\pi/4} \frac{\sin x}{x} dx$ (b) $\int_{-\pi}^{\pi/2} \frac{x}{\sin x} dx$ (c) $\frac{1}{2} \int_{0}^{\pi/2} \frac{x}{\sin x} dx$ (d) $\frac{1}{2} \int_{0}^{\pi/4} \frac{x}{\sin x} dx$

80. The value of $\int_{0}^{4/\pi} \left(3x^2 \sin \frac{1}{x} - x \cos \frac{1}{x}\right) dx$ is:

(a) $\frac{8\sqrt{2}}{3}$

(b) $\frac{24\sqrt{2}}{5^3}$

(c) $\frac{32\sqrt{2}}{3}$

(d) None of these

81. The number of values of x satisfying the equation :

$$\int_{-1}^{x} \left(8t^{2} + \frac{28t}{3} + 4\right) dt = \frac{\frac{3}{2}x + 1}{\log_{(x+1)}\sqrt{x+1}}, \text{ is :}$$

- (a) 0
- (b) 1
- (c) 2
- (d) 3

110

82.
$$\lim_{n\to\infty} \frac{1+2^4+3^4+\ldots +n^4}{n^5} - \lim_{n\to\infty} \frac{1+2^3+3^3+\ldots +n^3}{n^5}$$
 is:

(a) $\frac{1}{30}$

(b) zero (c) $\frac{1}{4}$

(d) $\frac{1}{5}$

83. The value of $\lim_{x\to 0^+} \frac{\int_{1}^{\cos x} (\cos^{-1} t) dt}{2x - \sin 2x}$ is equal to:

(d) $-\frac{1}{4}$

84. Consider a parabola $y = \frac{x^2}{4}$ and the point F(0,1).

Let $A_1(x_1, y_1), A_2(x_2, y_2), A_3(x_3, y_3), \dots, A_n(x_n, y_n)$ are 'n' points on the parabola such $x_k > 0$ and $\angle OFA_k = \frac{k\pi}{2n}(k=1,2,3,\ldots,n)$. Then the value of $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^n FA_k$, is equal to:

(d) None of these

85. The minimum value of $f(x) = \int_{1}^{4} e^{|x-t|} dt$ where $x \in [0, 3]$ is:

(a) $2e^2 - 1$ (b) $e^4 - 1$

(c) $2(e^2-1)$ (d) e^2-1

86. If $\int_{0}^{\infty} \frac{\cos x}{x} dx = \frac{\pi}{2}$, then $\int_{0}^{\infty} \frac{\cos^3 x}{x} dx$ is equals to :

(c) π

(d) $\frac{3\pi}{2}$

87. $\int \sqrt{1+\sin x} \left(\cos \frac{x}{2} - \sin \frac{x}{2}\right) dx = :$

(a) $\frac{1+\sin x}{2} + C$ (b) $(1+\sin x)^2 + C$ (c) $\frac{1}{\sqrt{1+\sin x}} + C$

(d) $\sin x + C$

88. If $I_n = \int_0^{\pi} \frac{\sin(2nx)}{\sin 2x} dx$, then the value of $I_{n+\frac{1}{2}}$ is equal to $(n \in I)$:

(a) $\frac{n\pi}{2}$

(d) 0

89. The value of function $f(x) = 1 + x + \int_{0}^{x} (\ln^2 t + 2 \ln t) dt$ where f'(x) vanishes is:

(a) $\frac{1}{e}$

(b) 0

(c) $\frac{2}{a}$

(d) $1 + \frac{2}{3}$

90. Let f be a differentiable function on R and satisfies $f(x) = x^2 + \int_{0}^{x} e^{-t} f(x-t) dt$; then $\int_{0}^{1} f(x) dx$

is equal to:

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{7}{12}$$
 (d) $\frac{5}{12}$

(d)
$$\frac{5}{12}$$

91. The value of the definite integral $\int_{-(\pi/2)}^{\pi/2} \frac{\cos^2 x}{1+5^x}$ equals to:

(a)
$$\frac{3\pi}{4}$$

(c)
$$\frac{\pi}{2}$$

(d)
$$\frac{\pi}{4}$$

92.
$$\int \left(\frac{x^2 - x + 1}{x^2 + 1}\right) e^{\cot^{-1}(x)} dx = f(x) \cdot e^{\cot^{-1}(x)} + C$$

where C is constant of integration. Then f(x) is equal to :

(b)
$$\sqrt{1-x}$$

(d)
$$\sqrt{1+x}$$

(a)
$$-x$$
 (b) $\sqrt{1-x}$ (c) x
93. $\lim_{n\to\infty} \frac{1}{n^3} (\sqrt{n^2+1} + 2\sqrt{n^2+2^2} + \dots + n\sqrt{(n^2+n^2)}) = x$

(a)
$$\frac{3\sqrt{2}-1}{2}$$

(a)
$$\frac{3\sqrt{2}-1}{2}$$
 (b) $\frac{2\sqrt{2}-1}{3}$ (c) $\frac{3\sqrt{3}-1}{3}$ (d) $\frac{4\sqrt{2}-1}{2}$

(c)
$$\frac{3\sqrt{3}-1}{3}$$

(d)
$$\frac{4\sqrt{2}-1}{2}$$

94.
$$\int \frac{(x^3-1)}{(x^4+1)(x+1)} dx$$
, is:

(a)
$$\frac{1}{4}\ln(1+x^4) + \frac{1}{3}\ln(1+x^3) + c$$
 (b) $\frac{1}{4}\ln(1+x^4) - \frac{1}{3}\ln(1+x^3) + c$

(b)
$$\frac{1}{4}\ln(1+x^4) - \frac{1}{3}\ln(1+x^3) + c$$

(c)
$$\frac{1}{4}\ln(1+x^4) - \ln(1+x) + c$$

(d)
$$\frac{1}{4}\ln(1+x^4) + \ln(1+x) + c$$

95. The value of Limit
$$\int_{x\to 0^+}^{\cos x} (\cos^{-1} t) dt$$
 is equal to :

- (a) 0
- (c) $\frac{2}{3}$
- (d) $\frac{-1}{4}$

96. Let
$$f(x) = \lim_{n \to \infty} \frac{\cos x}{1 + (\tan^{-1} x)^n}$$
, then $\int_0^\infty f(x) dx = \int_0^\infty f(x) dx$

- (a) tan(sin 1)
- (b) sin(tan 1)
- (c) 0
- (d) $\sin\left(\frac{\tan 1}{2}\right)$

97. The value of
$$\lim_{n\to\infty} \sum_{k=1}^{n} \left(\frac{k}{n^2 + n + 2k}\right) =$$

Advanced Problems in Methamatics for JEE

	(a) $\frac{1}{4}$	(b) $\frac{1}{3}$	(c)	$\frac{1}{2}$	(d) 1		
98.	The value of $\lim_{y\to 1^+} \frac{\int_{1}^{y} t }{\tan t}$	$\frac{1-1 dt}{d(y-1)}$ is:					
99.		(b) 1 $\frac{x}{(n-1)(1+x^2)^{n-1}}$		$\frac{(n-3)}{(n-1)} \int \frac{dx}{(1+x^2)^{n-1}}$	(d) does not exist Find the value of		
	(a) $\frac{11}{48} + \frac{5\pi}{64}$	by or may not use reduction $(b) \frac{11}{48} + \frac{5\pi}{32}$			(d) $\frac{1}{96} + \frac{5\pi}{32}$		
100.	Find the value of $\int_{0}^{\pi/4} (s)^{2}$ (a) $\frac{3\pi}{16}$	2 0	(c)	$\frac{3\pi}{32} - \frac{3}{4}$	(d) $\frac{3\pi}{16} - \frac{7}{8}$		
101.	$\int \frac{\cos 9x + \cos 6x}{2\cos 5x - 1} dx =$ (Where C is constant)	A $\sin 4x + B \sin + C$, then A of integration)	A + B	is equal to :	10 0		
102.	(a) $\frac{1}{2}$ $\int \frac{dx}{x^{2014} + x} = \frac{1}{p} \ln \left(\frac{1}{1} \right)$	(b) $\frac{3}{4}$ $\left(\frac{x^q}{x^r}\right) + C \text{ where } p, q, r \in \mathbb{R}$	(c) V the		(d) $\frac{5}{4}$ + $q+r$) equals		
	(Where C is constant of (a) 6039	of integration) (b) 6048		6047	(d) 6021		
	If $\int_{0}^{1} e^{-x^{2}} dx = a$, then \int_{0}^{1} (a) $\frac{1}{2e} (ea - 1)$	(b) $\frac{1}{2e}(ea+1)$	(c)	$\frac{1}{e}(ea-1)$	(d) $\frac{1}{e}(ea+1)$		
104. If $f(x)$ is a continuous function for all real values of x and satisfies $\int_{n}^{n+1} f(x) dx = \frac{n^2}{2} \forall n \in I, \text{ then } S$							
	$\int_{-3}^{3} f(x) dx \text{ is equal to}$ (a) $\frac{19}{2}$	(b) $\frac{35}{2}$	(c)	$\frac{17}{2}$	(d) $\frac{37}{2}$		
	-	-		-	2		

Indefinite and Definite Integration

105. If
$$\int \frac{dx}{x^4 (1+x^3)^2} = a \ln \left| \frac{1+x^3}{x^3} \right| + \frac{b}{x^3} + \frac{c}{1+x^3} + d$$
, then

(where d is arbitrary constant)

(a)
$$a = \frac{1}{3}, b = \frac{1}{3}, x = \frac{1}{3}$$

(b)
$$a = \frac{2}{3}, b = -\frac{1}{3}, c = \frac{1}{3}$$

(c)
$$a = \frac{2}{3}, b = -\frac{1}{3}, c = -\frac{1}{3}$$

(d)
$$a = \frac{2}{3}, b = \frac{1}{3}, c = -\frac{1}{3}$$

106.
$$\lim_{n \to \infty} \frac{1}{\sqrt{n}\sqrt{n+1}} + \frac{1}{\sqrt{n}\sqrt{n+2}} + \dots + \frac{1}{\sqrt{n}\sqrt{4n}}$$
 is equal to :

(c)
$$2(\sqrt{2}-1)$$

(d)
$$2\sqrt{2} - 1$$

(a) 2 (b) 4 (c)
$$2(\sqrt{2}-1)$$
 (d) $2\sqrt{2}-1$
107. Let $f(x) = \int_{x}^{2} \frac{dy}{\sqrt{1+y^3}}$. The value of the integral $\int_{0}^{2} xf(x) dx$ is equal to:

(b)
$$\frac{1}{3}$$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{2}{3}$$

108. The value of the definite integral $\int_{0}^{\pi/3} \ln(1+\sqrt{3}\tan x) dx$ equals

(a)
$$\frac{\pi}{3} \ln 2$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi^2}{6} \ln 2$$
 (d) $\frac{\pi}{2} \ln 2$

(d)
$$\frac{\pi}{2} \ln 2$$

109. If
$$\int_{0}^{100} f(x) dx = a$$
, then $\sum_{r=1}^{100} \int_{0}^{1} (f(r-1+x) dx) =$

110. The value of $\int_{0}^{1} \lim_{n \to \infty} \sum_{k=0}^{n} \frac{x^{k+2} 2^k}{k!} dx$ is :

(a)
$$e^2 - 1$$
 (b) 2

(c)
$$\frac{e^2-1}{2}$$
 (d) $\frac{e^2-1}{4}$

(d)
$$\frac{e^2-1}{4}$$

111. Evaluate : $\int x^5 \sqrt{1+x^3} \, dx$.

(a)
$$\frac{1}{15}(1+x^3)^{5/2} - \frac{1}{9}(1+x)^3)^{3/2} + c$$

(b)
$$\frac{2}{15}(1+x^3)^{5/2} - \frac{1}{9}(1+x^3)^{3/2} + c$$

(c)
$$\frac{2}{15}(1+x^3)^{5/2} - \frac{2}{9}(1+x^3)^{3/2} + c$$

(d)
$$\frac{1}{15}(1+x^3)^{5/2} - \frac{2}{9}(1+x^3)^{3/2} + c$$

114

- **112.** If $f(x) = \int_{-\infty}^{x} \frac{\sin t}{t} dt$, which of the following is true?
 - (a) $f(0) > f(1 \cdot 1)$
 - (b) $f(0) < f(1 \cdot 1) > f(2 \cdot 1)$
 - (c) $f(0) < f(1 \cdot 1) < f(2 \cdot 1) > f(3 \cdot 1)$
 - (d) $f(0) < f(1 \cdot 1) < f(2 \cdot 1) < f(3 \cdot 1) > f(4 \cdot 1)$
- **113.** Evaluate : $\int \frac{x^3 + 3x^2 + x + 9}{(x^2 + 1)(x^2 + 3)} dx.$
 - (a) $\ln |x^2 + 3| + 3 \tan^{-1} x + c$
- (b) $\frac{1}{2} \ln |x^2 + 3| + \tan^{-1} x + c$
- (c) $\frac{1}{2}\ln|x^2+3|+3\tan^{-1}x+c$
- (d) $\ln |x^2 + 3| \tan^{-1} x + c$

- 114. $\int \frac{\sqrt{\sec^5 x}}{\sqrt{\sin^3 x}} dx$ equals to:
 - (a) $(\tan x)^{3/2} \sqrt{\tan x} + C$
- (b) $2\left(\frac{1}{3}(\tan x)^{3/2} \frac{1}{\sqrt{\tan x}}\right) + C$
- (c) $\frac{1}{3}(\tan x)^{3/2} \sqrt{\tan x} + C$
- (d) $\sqrt{\sin x} + \sqrt{\cos x} + C$
- 115. $\lim_{x\to 0} \int_{0}^{x} \frac{e^{\sin(tx)}}{x} dt$ equals to :
- (c) e
- (d) Does not exist

- (a) 1 (b) 2 **116.** If $A = \int_{0}^{\pi} \frac{\sin x}{x^2} dx$, then $\int_{0}^{\pi/2} \frac{\cos 2x}{x} dx$ is equal to :

 - (a) 1-A (b) $\frac{3}{2}-A$
- (c) A-1
- (d) 1 + A

1	1						Answers												
1.	(b)	2.	(b)	3.	(ъ)	4.	(d)	5.	(d)	6.	(a)	7.	(d)	8.	(d)	9.	(b)	10.	(d)
11.	(b)	12.	(a)	13.	(b)	14.	(b)	15.	(a)	16.	(a)	17.	(b)	18.	(c)	19.	(b)	20.	(a)
21.	(a)	22.	(d)	23.	(b)	24.	(b)	25.	(c)	26.	(d)	27.	(a)	28.	(d)	29.	(d)	30.	(c)
31.	(d)	32.	(b)	33.	(c)	34.	(d)	35.	(c)	36.	(a)	37.	(c)	38.	(a)	39.	(d)	40.	(d
41.	(b)	42.	(a)	43.	(b)	44.	(a)	45.	(a)	46.	(a)	47.	(d)	48.	(d)	49.	(d)	50.	(c
51.	(c)	52.	(b)	53.	(c)	54.	(c)	55.	(b)	56.	(c)	57.	(b)	58.	(b)	59.	(b)	60.	(a
61.	(a)	62.	(a)	63.	(b)	64.	(c)	65.	(d)	66.	(d)	67.	(a)	68.	(d)	69.	(d)	70.	(b
71.	(d)	72.	(b)	73.	(a)	74.	(d)	75.	(b)	76.	(a)	77.	(b)	78.	(c)	79.	(c)	80.	(c
81.	(b)	82.	(d)	83.	(d)	84.	(b)	85.	(c)	86.	(a)	87.	(d)	88.	(d)	89.	(d)	90.	(d
91.	(d)	92.	(c)	93.	(ъ)	94.	(c)	95.	(d)	96.	(b)	97.	(c)	98.	(a)	99.	(a)	100.	(b
101.	(d)	102.	(a)	103	(a)	104.	(b)	105.	(c)	106.	(a)	107.	(d)	108.	(a)	109.	(b)	110.	(d
111.	(c)	112.	(d)	113	(c)	114	(ъ)	115.	(a)	116.	(c)								

Exercise-2: One or More than One Answer is/are Correct

1.
$$\int \frac{dx}{(1+\sqrt{x})^8} = -\frac{1}{3(1+\sqrt{x})^{k_1}} + \frac{2}{7(1+\sqrt{x})^{k_2}} + C$$
, then:

(a)
$$k_1 = 5$$

(b)
$$k_1 = 6$$

(c)
$$k_2 = 7$$

(d)
$$k_2 = 8$$

2. If
$$\int_{-\alpha}^{\alpha} \left(e^x + \cos x \ln \left(x + \sqrt{1 + x^2} \right) \right) dx > \frac{3}{2}$$
, then possible value of α can be:

(a) 1 (b) 2 (c) 3 (d) 4
3. For
$$a > 0$$
, if $I = \int \sqrt{\frac{x}{a^3 - x^3}} dx = A \sin^{-1} \left(\frac{x^{3/2}}{B} \right) + C$, where C is any arbitrary constant, then:

(a)
$$A = \frac{2}{3}$$

(b)
$$B = a^{3/2}$$

(a)
$$A = \frac{2}{3}$$
 (b) $B = a^{3/2}$ (c) $A = \frac{1}{3}$

(d)
$$B = a^{1/2}$$

4. Let
$$\int x \sin x \cdot \sec^3 x \, dx = \frac{1}{2} (x \cdot f(x) - g(x)) + k$$
, then :

(a)
$$f(x) \notin (-1,1)$$

(b) $g(x) = \sin x \text{ has 6 solution for } x \in [-\pi, 2\pi]$

(c)
$$g'(x) = f(x), \forall x \in R$$

(d) f(x) = g(x) has no solution

5. If
$$\int (\sin 3\theta + \sin \theta) \cos \theta e^{\sin \theta} d\theta = (A \sin^3 \theta + B \cos^2 \theta + C \sin \theta + D \cos \theta + E) e^{\sin \theta} + F$$
, then:

(a)
$$A = -4$$

(b)
$$B = -12$$

(c)
$$C = -20$$

(a)
$$A = -4$$
 (b) $B = -12$ (c) $C = -20$ (d) None of these
6. For $a > 0$, if $I = \int \sqrt{\frac{x}{a^3 - x^3}} dx = A \sin^{-1} \left(\frac{x^{3/2}}{B}\right) + C$, where C is any arbitrary constant, then:

(a)
$$A = \frac{2}{3}$$

(b)
$$B = a^{3/2}$$

(c)
$$A = \frac{1}{3}$$
 (d) $B = a^{1/2}$

(d)
$$B = a^{1/2}$$

7. If
$$f(\theta) = \lim_{n \to \infty} \sum_{r=0}^{n\theta} \frac{2r}{n\sqrt{(3\theta n - 2r)(n\theta + 2r)}}$$
 then:

(a)
$$f(1) = \frac{\pi}{6}$$

(b)
$$f(\theta) = \frac{\theta}{2} \int_{0}^{\theta} \frac{dx}{\sqrt{\theta^2 - \left(x - \frac{\theta}{2}\right)^2}}$$

(c)
$$f(\theta)$$
 is a constant function

(d) $y = f(\theta)$ is invertible

8. If
$$f(x+y) = f(x)f(y)$$
 for all x, y and $f(0) \neq 0$, and $F(x) = \frac{f(x)}{1 + (f(x))^2}$ then:

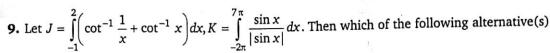
(a)
$$\int_{-2010}^{2011} F(x) dx = \int_{0}^{2011} F(x) dx$$

(b)
$$\int_{-2010}^{2011} F(x) dx - \int_{0}^{2010} F(x) dx = \int_{0}^{2011} F(x) dx$$

(c)
$$\int_{-2010}^{2011} F(x) dx = 0$$

(b)
$$\int_{-2010}^{2011} F(x) dx - \int_{0}^{2010} F(x) dx = \int_{0}^{2011} F(x) dx$$
(d)
$$\int_{-2010}^{2010} (2F(-x) - F(x)) dx = 2 \int_{0}^{2010} F(x) dx$$

Indefinite and Definite Integration



is/are correct?

(a)
$$2J + 3K = 8\pi$$

(b)
$$4J^2 + K^2 = 26\pi^2$$
 (c) $2J - K = 3\pi$ (d) $\frac{J}{K} = \frac{2}{5}$

(c)
$$2J - K = 37$$

$$(d) \frac{J}{K} = \frac{2}{5}$$

10. Which of the following function(s) is/are even?

(a)
$$f(x) = \int_{0}^{x} \ln\left(t + \sqrt{1 + t^2}\right) dt$$
 (b) $g(x) = \int_{0}^{x} \frac{(2^t + 1)t}{2^t - 1} dt$

(b)
$$g(x) = \int_{0}^{x} \frac{(2^{t} + 1)t}{2^{t} - 1} dt$$

(c)
$$h(x) = \int_{0}^{x} \left(\sqrt{1+t+t^2} - \sqrt{1-t+t^2} \right) dt$$
 (d) $l(x) = \int_{0}^{x} \ln\left(\frac{1-t}{1+t}\right) dt$

(d)
$$l(x) = \int_{0}^{x} \ln\left(\frac{1-t}{1+t}\right) dt$$

11. Let
$$l_1 = \lim_{x \to \infty} \sqrt{\frac{x - \cos^2 x}{x + \sin x}}$$
 and $l_2 = \lim_{h \to 0^+} \int_{-1}^1 \frac{h dx}{h^2 + x^2}$. Then:

- (a) Both l_1 and l_2 are less than 22/7
- (b) One of the two limits is rational and other irrational
- (c) $l_2 > l_1$
- (d) l_2 is greater than 3 times of l_1

12. For
$$a > 0$$
, if $I = \int \sqrt{\frac{x}{a^3 - x^3}} dx = A \sin^{-1} \left(\frac{x^{3/2}}{B} \right) + C$, where C is any arbitrary constant, then:

(a)
$$A = \frac{2}{3}$$

(b)
$$B = a^{3/2}$$
 (c) $A = \frac{1}{3}$ (d) $B = a^{1/2}$

(c)
$$A = \frac{1}{3}$$

(d)
$$B = a^{1/2}$$

13. If
$$\int \frac{dx}{1-\sin^4 x} = a \tan x + b \tan^{-1}(c \tan x) + D$$
, then:

(a)
$$a = \frac{1}{2}$$

(b)
$$b = \sqrt{2}$$

(c)
$$c = \sqrt{2}$$

(b)
$$b = \sqrt{2}$$
 (c) $c = \sqrt{2}$ (d) $b = \frac{1}{2\sqrt{2}}$

14. The value of definite integral:

$$\int_{-2014}^{2014} \frac{dx}{1 + \sin^{2015}(x) + \sqrt{1 + \sin^{4030}(x)}}$$
 equals :

- (a) 0
- (c) $(2014)^2$
- (d) 4028

15. Let
$$L = \lim_{n \to \infty} \int_{a}^{\infty} \frac{n \ dx}{1 + n^2 x^2}$$
 where $a \in R$ then L can be:

- (a) π
- (b) $\frac{\pi}{2}$
- (c) 0
- (d) $\frac{\pi}{3}$

Advanced Problems in Methamatics for JEE

16. Let
$$I = \int_{0}^{1} \sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}} dx$$
 and $J = \int_{0}^{1} \sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}} dx$ then correct statement(s) is/are:

(a) $I + J = 2$

(b) $I - J = \pi$

(c) $I = \frac{2+\pi}{2}$

(d) $J = \frac{4-\pi}{2}$

(a)
$$I + J = 2$$

(b)
$$I - J = \pi$$

(c)
$$I = \frac{2+\pi}{2}$$

$$(d) J = \frac{4-\pi}{2}$$

1	1				Ans	wer	s				
1.	(b, c)	2.	(a, b, c, d)	3.	(a, b)	4.	(a, c, d)	5.	(a, b, c)	6.	(a, b)
7.	(a, b, d)	8.	(b, d)	9.	(a, b)	10.	(a, b, c, d)	11.	(a, b, c, d)	12.	(a, b)
13.	(a, c)	14.	(b)	18,	(a, b, c)	16.	(b, c)				

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $f(x) = \int x^2 \cos^2 x (2x + 6\tan x - 2x \tan^2 x) dx$ and f(x) passes through the point $(\pi, 0)$

- 1. If $f: R-(2n+1)\frac{\pi}{2} \longrightarrow R$ then f(x) be a:
 - (a) even function

(b) odd function

(c) neither even nor odd

- (d) even as well as odd both
- **2.** The number of solution(s) of the equation $f(x) = x^3$ in $[0, 2\pi]$ be :
 - (a) 0
- (b) 3
- (d) None of these

Paragraph for Question Nos. 3 to 4

Let f(x) be a twice differentiable function defined on $(-\infty, \infty)$ such that f(x) = f(2-x) and $f'\left(\frac{1}{2}\right) = f'\left(\frac{1}{4}\right) = 0$. Then

- **3.** The minimum number of values where f''(x) vanishes on [0, 2] is:

- (d) 5

- **4.** $\int_{1}^{1} f'(1+x) x^2 e^{x^2} dx$ is equal to :

- (d) 0
- (a) 1 (b) π (c) 5. $\int_{0}^{1} f(1-t)e^{-\cos \pi t} dt \int_{1}^{2} f(2-t)e^{\cos \pi t} dt$ is equal to :
 - (a) $\int_{0}^{2} f'(t)e^{\cos \pi t} dt$ (b) 1
- (c) 2
- (d) π

Paragraph for Question Nos. 6 to 8

Consider the function f(x) and g(x), both defined from $R \to R$

$$f(x) = \frac{x^3}{2} + 1 - x \int_0^x g(t) dt$$
 and $g(x) = x - \int_0^1 f(t) dt$, then

- **6.** Minimum value of f(x) is:
 - (a) 0
- (c) $\frac{3}{2}$
- (d) Does not exist

	62	п	в	ø	8	а
e	п	Р	7	۳	٠	ч

Advanced Problems in Methamatics for JEE

7. The number of points of intersection of f(x) and g(x) is/are:

- (a) 0
- (b) 1
- (c) 2
- (d) 3

8. The area bounded by g(x) with co-ordinate axes is (in square units):

- (a) $\frac{9}{4}$

- (d) None of these

Paragraph for Question Nos. 9 to 11

Let f(x) be function defined on [0, 1] such that f(1) = 0 and for any $a \in (0, 1]$, $\int_{a}^{b} f(x) dx - \int_{a}^{b} f(x) dx = 2 f(a) + 3a + b \text{ where } b \text{ is constant.}$

- **9.** *b* =
 - (a) $\frac{3}{2e} 3$
- (b) $\frac{3}{2e} \frac{3}{2}$ (c) $\frac{3}{2e} + 3$ (d) $\frac{3}{2e} + \frac{3}{2}$

10. The length of the subtangent of the curve y = f(x) at x = 1/2 is :

- (b) $\frac{\sqrt{e}-1}{2}$ (c) $\sqrt{e}+1$ (d) $\frac{\sqrt{e}+1}{2}$

11. $\int_{0}^{1} f(x) dx =$

- (a) $\frac{1}{1}$
- (b) $\frac{1}{2e}$
- (c) $\frac{3}{2e}$
- (d) $\frac{2}{}$

Paragraph for Question Nos. 12 to 13

Let $f_0(x) = \ln x$ and for $n \ge 0$ and x > 0

Let $f_{n+1}(x) = \int f_n(t)dt$ then:

12. $f_3(x)$ equals:

- (a) $\frac{x^3}{3} \left(lnx \frac{5}{6} \right)$ (b) $\frac{x^3}{3} \left(lnx \frac{11}{6} \right)$ (c) $\frac{x^3}{3} \left(lnx \frac{11}{6} \right)$ (d) $\frac{x^3}{3} \left(lnx \frac{5}{6} \right)$

13. Value of $\lim_{n\to\infty} \frac{(\lfloor \frac{n}{n} \rfloor) f_n(1)}{\ln(n)}$:

- (a) 0
- (b) 1
- (c) -1
- (d) -e

Paragraph for Question Nos. 14 to 15

Let $f: R \to \left[\frac{3}{4}, \infty\right]$ be a surjective quadratic function with line of symmetry 2x - 1 = 0 and

- **14.** If $g(x) = \frac{f(x) + f(-x)}{2}$ then $\int \frac{dx}{\sqrt{g(e^x) 2}}$ is equal to :

 - (a) $\sec^{-1}(e^{-x}) + C$ (b) $\sec^{-1}(e^{x}) + C$ (c) $\sin^{-1}(e^{-x}) + C$ (d) $\sin^{-1}(e^{x}) + C$

(Where C is constant of integration)

- 15. $\int \frac{e^x}{f(e^x)} dx$
 - (a) $\cot^{-1}\left(\frac{2e^x-1}{\sqrt{3}}\right)+C$

(b) $\frac{2}{\sqrt{3}} \cot^{-1} \left(\frac{2e^x + 1}{\sqrt{3}} \right) + C$

(c) $\tan^{-1}\left(\frac{2e^x+1}{\sqrt{3}}\right)+C$

(d) $\frac{2}{\sqrt{3}} \tan^{-1} \left(\frac{2e^x - 1}{\sqrt{3}} \right) + C$

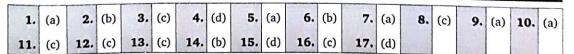
Paragraph for Question Nos. 16 to 17

Let $g(x) = x^C e^{Cx}$ and $f(x) = \int_0^x te^{2t} (1 + 3t^2)^{1/2} dt$. If $L = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$ is non-zero finite number then:

- **16.** The value of *C* is :
 - (a) 7
- (b) $\frac{3}{2}$
- (c) 2
- (d) 3

- 17. The value of L is:
 - (a) $\frac{2}{7}$
- (b) $\frac{1}{2}$
- (c) $\frac{\sqrt{3}}{4}$ (d) $\frac{\sqrt{3}}{2}$

Answers



Exercise-4: Matching Type Problems

1.

	Column-I		Column-II
(A)	$\lim_{n \to \infty} 4 \left[\frac{\frac{1}{e^{n}}}{n^{2}} + \frac{2}{n^{2}} e^{\frac{2}{n}} + \frac{3}{n^{2}} e^{\frac{3}{n}} + \dots + \frac{1}{n} e \right] =$	(P)	0
(B)	$\int_{0}^{1} \ln\left(\frac{1}{x} - 1\right) dx =$	(Q)	1
1	$\int_{0}^{10\pi} \left(\lim_{x \to y} \left(\frac{\sin x - \sin y}{x - y} \right) \right) dy =$	(R)	2
(D)	$\int_{0}^{\infty} \frac{\ln\left(x + \frac{1}{x}\right) dx}{(1 + x^{2})} = \frac{\pi}{2} \ln a, \text{ then } a =$	(s)	4
		(T)	5

2. Match the following $\int f(x) dx$ is equal to, if

1	Column-I		Column-II
(A)	$f(x) = \frac{1}{(x^2 + 1)\sqrt{x^2 + 2}}$	(P)	$\frac{x^5}{5(1-x^4)^{5/2}} + C$
(B)	$f(x) = \frac{1}{(x+2)\sqrt{x^2+6x+7}}$		$\sin^{-1}\left(\frac{x+1}{(x+2)\sqrt{2}}\right) + C$
(C)	$f(x) = \frac{x^4 + x^8}{(1 - x^4)^{7/2}}$	(R)	$(\sqrt{x}-2)\sqrt{1-x}+\cos^{-1}\sqrt{x}+C$
(D)	$f(x) = \sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}}$	(S)	$-\tan^{-1}\sqrt{1+\frac{2}{x^2}}+C$
		(T)	$\frac{x^6}{6(1-x^4)^{5/2}} + C$

Indefinite and Definite Integration

123

3.

	Column		Column-II
(A)	$\int_0^{\pi/2} \frac{\cos x}{(1+\sin x)(2+\sin x)} dx =$	(P)	$\frac{\pi}{6}$
(B)	$\int_{0}^{\frac{41\pi}{4}} \cos x dx =$	(Q)	$20 + \frac{1}{\sqrt{2}}$
	$\int_{-1/2}^{1/2} \left([x] + \ln\left(\frac{1+x}{1-x}\right) \right) dx =$	(R)	ln 4 – ln 3
(D)	where [·] greatest integer function $\int_{0}^{\pi/2} \frac{2\sqrt{\cos\theta}}{3(\sqrt{\sin\theta} + \sqrt{\cos\theta})} d\theta =$	(S)	$-\frac{1}{2}$

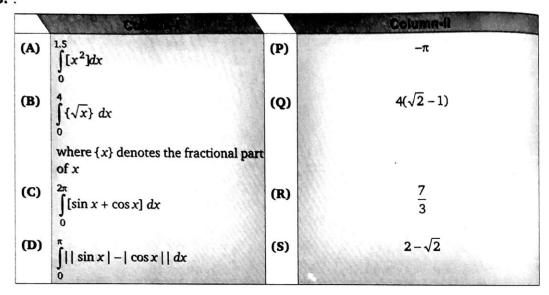
4.

	Column-I		Column-II
(A)	If quardratic equation $3x^2 + ax + 1 = 0$ and $2x^2 + bx + 1 = 0$ have a common root then value of $5ab - 2a^2 - 3b^2 =$	(P)	6
B)	Number of solution of $x^4 - 2x^2 \sin^2 \frac{\pi x}{2} + 1 = 0$	(Q)	1
	is/are		
(C)	Number of points of discontinuity $y = \frac{1}{u^2 + u - 2}$	(R)	2
	where $u = \frac{1}{x-1}$ is/are		
(D)	$\int \frac{dx}{\sqrt[3]{x^{5/2}(1+x)^{7/2}}} = A\left(\frac{x+1}{x}\right)^{-1/A} + C$	(S)	3
	(Where C is integration constant), then $A =$		

Advanced Problems in Methamatics for JEE

5. :

124



Answers

- 1. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow P$; $D \rightarrow S$
- 2. $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$
- 3. $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow S$; $D \rightarrow P$
- 4. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$
- 5. $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$

Exercise-5: Subjective Type Problems

1.
$$\int \frac{x + (\arccos 3x)^2}{\sqrt{1 - 9x^2}} dx = \frac{1}{k_1} \left(\sqrt{1 - 9x^2} + (\cos^{-1} 3x)^{k_2} \right) + C, \text{ then } k_1^2 + k_2^2 =$$

(where C is an arbitrary constant.)

2. If
$$\int_{0}^{\infty} \frac{x^3}{(a^2 + x^2)^5} dx = \frac{1}{ka^6}$$
, then find the value of $\frac{k}{8}$.

3. Let
$$f(x) = x \cos x$$
; $x \in \left[\frac{3\pi}{2}, 2\pi\right]$ and $g(x)$ be its inverse. If $\int_{0}^{2\pi} g(x) dx = \alpha \pi^{2} + \beta \pi + \gamma$, where α, β and $\gamma \in R$, then find the value of $2(\alpha + \beta + \gamma)$.

4. If
$$\int (x^6 + x^4 + x^2) \sqrt{2x^4 + 3x^2 + 6} \ dx = \frac{(\alpha x^6 + \beta x^4 + \gamma x^2)^{3/2}}{18} + C$$
 where *C* is constant, then find the value of $(\beta + \gamma - \alpha)$.

5. If the value of the definite integral
$$\int_{-1}^{1} \cot^{-1} \left(\frac{1}{\sqrt{1-x^2}} \right) \cdot \left(\cot^{-1} \frac{x}{\sqrt{1-(x^2)^{|x|}}} \right) dx = \frac{\pi^2(\sqrt{a}-\sqrt{b})}{\sqrt{c}}$$

where $a, b, c, \in N$ in their lowest from, then find the value of (a + b + c).

6. The value of
$$\int \frac{\tan x}{\tan^2 x + \tan x + 1} dx = x - \frac{2}{\sqrt{A}} \tan^{-1} \left(\frac{2 \tan x + 1}{\sqrt{A}} \right) + C$$

Then the value of A is:

7. Let
$$\int_{0}^{1} \frac{4x^3 (1 + (x^4)^{2010})}{(1 + x^4)^{2012}} dx = \frac{\lambda}{\mu}$$

where λ and μ are relatively prime positive integers. Find unit digit of μ .

8. Let
$$\int_{1}^{\sqrt{3}} \left(x^{2x^2+1} + \ln(x^{2x^{2x^2+1}}) \right) dx = N$$
. Find the value of $(N-6)$.

9. If
$$\int \frac{dx}{\cos^3 x - \sin^3 x} = A \tan^{-1}(f(x)) + B \ln \left| \frac{\sqrt{2} + f(x)}{\sqrt{2} - f(x)} \right| + C$$
 where $f(x) = \sin x + \cos x$ find the value of $(12A + 9\sqrt{2}B) - 3$.

10. Find the value of |a| for which the area of triangle included between the coordinate axes and any tangent to the curve $x^a y = \lambda^a$ is constant (where λ is constant.)

11. Let
$$I = \int_{0}^{\pi} x^{6} (\pi - x)^{8} dx$$
, then $\frac{\pi^{15}}{(^{15}C_{9})I} =$

Advanced Problems in Methamatics for JEE

126

- **12.** If maximum value of $\int_{0}^{1} (f(x))^{3} dx$ under the condition $-1 \le f(x) \le 1$; $\int_{0}^{1} f(x) dx = 0$ is $\frac{p}{q}$ (where p and q are relatively prime positive integers.). Find p + q.
- **13.** Let a differentiable function f(x) satisfies $f(x) \cdot f'(-x) = f(-x) \cdot f'(x)$ and f(0) = 1. Find the value of $\int_{-2}^{2} \frac{dx}{1 + f(x)}$.
- **14.** If $\{x\}$ denotes the fractional part of x, then $I = \int_{0}^{100} \{\sqrt{x}\} dx$, then the value of $\frac{9I}{155}$ is :
- **15.** Let $I_n = \int_0^\pi \frac{\sin\left(n + \frac{1}{2}\right)x}{\sin\left(\frac{x}{2}\right)} dx$ where $n \in W$. If $I_1^2 + I_2^2 + I_3^2 + \dots + I_{20}^2 = m\pi^2$, then find the

largest prime factor of m.

- **16.** If *M* be the maximum value of $72 \int_{0}^{y} \sqrt{x^4 + (y y^2)^2} \, dx$ for $y \in [0, 1]$, then find $\frac{M}{6}$.
- **17.** Find the number of points where $f(\theta) = \int_{-1}^{1} \frac{\sin \theta \, dx}{1 2x \cos \theta + x^2}$ is discontinuous where $\theta \in [0, 2\pi]$.
- **18.** Find the value of $\lim_{n\to\infty}\frac{1}{\sqrt{n}}\left(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\dots+\frac{1}{\sqrt{n}}\right)$.
- **19.** The maximum value of $\int_{-\pi/2}^{3\pi/2} \sin x \cdot f(x) dx$, subject to the condition $|f(x)| \le 5$ is M, then $\frac{M}{10}$ is equal to:
- **20.** Given a function g, continuous everywhere such that g(1) = 5 and $\int_{0}^{1} g(t) dt = 2$. If $f(x) = \frac{1}{2} \int_{0}^{x} (x-t)^{2} g(t) dt$, then find the value of f'''(1) + f''(1).
- **21.** If $f(n) = \frac{1}{\pi} \int_{0}^{\pi/2} \frac{\sin^2(n\theta) d\theta}{\sin^2 \theta}$, $n \in \mathbb{N}$, then evaluate $\frac{f(15) + f(3)}{f(12) f(10)}$.
- 22. Let f(2-x) = f(2+x) and f(4-x) = f(4+x). Function f(x) satisfies $\int_{0}^{2} f(x) dx = 5$.

 If $\int_{0}^{50} f(x) dx = I$. Find $[\sqrt{I} 3]$. (where $[\cdot]$ denotes greatest integer function.)

23. Let
$$I_n = \int_{-1}^{1} |x| \left(1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \dots + \frac{x^{2n}}{2n} \right) dx$$
. If $\lim_{n \to \infty} I_n$ can be expressed as rational $\frac{p}{q}$ in its lowest form, then find the value of $\frac{pq(p+q)}{10}$.

24. Let
$$\lim_{n \to \infty} n^{-\frac{1}{2}\left(1+\frac{1}{n}\right)} \cdot (1^1 \cdot 2^2 \cdot 3^3 \cdot \dots \cdot n^n)^{\frac{1}{n^2}} = e^{\frac{-p}{q}}$$

where p and q are relative prime positive integers. Find the value of $\mid p+q\mid$.

25. If
$$\int_a^b |\sin x| dx = 8$$
 and $\int_0^{a+b} |\cos x| dx = 9$ then the value of $\frac{1}{\sqrt{2}x} \left| \int_a^b x \sin x dx \right|$ is:

26. If f(x), g(x), h(x) and $\phi(x)$ are polynomial in x,

$$\left(\int_{1}^{x} f(x) h(x) dx\right) \left(\int_{1}^{x} g(x) \phi(x) dx\right) - \left(\int_{1}^{x} f(x) \phi(x) dx\right) \left(\int_{1}^{x} g(x) h(x) dx\right)$$

is divisible by $(x-1)^{\lambda}$. Find maximum value of λ .

27. If
$$\int_{0}^{2} (3x^2 - 3x + 1)\cos(x^3 - 3x^2 + 4x - 2)dx = a\sin(b)$$
, where *a* and *b* are positive integers. Find the value of $(a + b)$.

28. let
$$f(x) = \int_{0}^{x} e^{x-y} f'(y) dy - (x^2 - x + 1) e^x$$

Find the number of roots of the equation f(x) = 0.

29. For a positive integer
$$n$$
, let $I_n = \int_{-\infty}^{\pi} \left(\frac{\pi}{2} - |x| \right) \cos nx \, dx$

Find the value of $[I_1 + I_2 + I_3 + I_4]$ where $[\cdot]$ denotes greatest integer function.

						Ansv	vers						1
1.	90	2.	3	3.	3	4.	7	5.	7	6.	3	7.	
8.	7	9.	8	10.	1	11.	9	12.	5	13.	2	14.	3
15.	5	16.	4	17.	3	18.	2	19.	2	20.	7	21.	ç
22.	8	23.	3	24.	5	25.	2	26.	4	27.	2	28.	1
29.	4												

Chapter 6 - Area Under Curves

AREA UNDER CURVES

Exercise-1: Single Choice Problems

1.	The	area	en	closed	by	the	curve
	-			_			

[x+3y] = [x-2] where $x \in [3, 4)$ is:

(where [·] denotes greatest integer function.)

- (a) $\frac{2}{3}$
- (b) $\frac{1}{3}$
- (c) $\frac{1}{4}$
- (d) 1

2. The area of region enclosed by the curves $y = x^2$ and $y = \sqrt{|x|}$ is :

- (a) $\frac{1}{3}$
- (b) $\frac{2}{3}$
- (c) $\frac{4}{3}$
- (d) $\frac{16}{3}$

3. Area enclosed by the figure described by the equation $x^4 + 1 = 2x^2 + y^2$, is:

- (a) 2
- (b) $\frac{16}{3}$
- (c) $\frac{8}{3}$
- (d) $\frac{4}{3}$

4. The area defined by $|y| \le e^{-|x|} - \frac{1}{2}$ in cartesian co-ordinate system, is :

- (a) $(4-2\ln 2)$
- (b) $(4-\ln 2)$
- (c) $(2-\ln 2)$
- (d) $(2-2\ln 2)$

5. For each positive integer n > 1; A_n represents the area of the region restricted to the following two inequalities: $\frac{x^2}{n^2} + y^2 \le 1$ and $x^2 + \frac{y^2}{n^2} \le 1$. Find $\lim_{n \to \infty} A_n$.

- (a) 4
- (b) ·
- (c) 2
- (d) 3

6. The ratio in which the area bounded by curves $y^2 = 12x$ and $x^2 = 12y$ is divided by the line x = 3 is:

- (a) 7:15
- (b) 15:49
- (c) 1:3
- (d) 17:49

7. The value of positive real parameter 'a' such that area of region bounded by parabolas $y = x - ax^2$, $ay = x^2$ attains its maximum value is equal to:

- (a) $\frac{1}{2}$
- (b) 2
- (c) $\frac{1}{3}$
- (d) 1

8.	For $0 < r < 1$, let n_r denotes the line that is normal to the curve $y = x^r$ at the point $(1, 1)$. Let S_r
	denotes the region in the first quadrant bounded by the curve $y = x^r$; the x-axis and the line n_r .
	Then the value of r that minimizes the area of S_r is:

(0)	1
(a)	$\sqrt{2}$

(b)
$$\sqrt{2} - 1$$

(b)
$$\sqrt{2}-1$$
 (c) $\frac{\sqrt{2}-1}{2}$ (d) $\sqrt{2}-\frac{1}{2}$

(d)
$$\sqrt{2} - \frac{1}{2}$$

9. The area bounded by $|x| = 1 - y^2$ and |x| + |y| = 1 is :

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{2}$$

(c)
$$\frac{2}{3}$$

(d) 1

10. Point A lies on curve $y = e^{-x^2}$ and has the coordinate (x, e^{-x^2}) where x > 0. Point B has coordinates (x, 0). If 'O' is the origin, then the maximum area of $\triangle AOB$ is :

(a)
$$\frac{1}{\sqrt{8e}}$$

(b)
$$\frac{1}{\sqrt{4e}}$$

(c)
$$\frac{1}{\sqrt{2e}}$$

(d)
$$\frac{1}{\sqrt{e}}$$

11. The area enclosed between the curves $y = ax^2$ and $x = ay^2$ (a > 0) is 1 sq. unit, then the value of a is:

(a)
$$\frac{1}{\sqrt{3}}$$

(b)
$$\frac{1}{2}$$

(d)
$$\frac{1}{3}$$

12. Let $f(x) = x^3 - 3x^2 + 3x + 1$ and g be the inverse of it; then area bounded by the curve y = g(x) with x-axis between x = 1 to x = 2 is (in square units):

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{4}$$

(c)
$$\frac{3}{4}$$

13. Area bounded by $x^2y^2 + y^4 - x^2 - 5y^2 + 4 = 0$ is equal to :

(a)
$$\frac{4\pi}{3} + \sqrt{2}$$

(b)
$$\frac{4\pi}{3} - \sqrt{2}$$

(a)
$$\frac{4\pi}{3} + \sqrt{2}$$
 (b) $\frac{4\pi}{3} - \sqrt{2}$ (c) $\frac{4\pi}{3} + 2\sqrt{3}$

14. Let $f: \mathbb{R}^+ \to \mathbb{R}^+$ is an invertible function such that f'(x) > 0 and $f''(x) > 0 \ \forall \ x \in [1, 5]$. If f(1) = 1 and f(5) = 5 and area bounded by y = f(x), x-axis, x = 1 and x = 5 is 8 sq. units. Then the area bounded by $y = f^{-1}(x)$, x-axis, x = 1 and x = 5 is:

15. A circle centered at origin and having radius π units is divided by the curve $y = \sin x$ in two parts. Then area of the upper part equals to :

(a)
$$\frac{\pi^2}{2}$$

(b)
$$\frac{\pi^3}{4}$$

(c)
$$\frac{\pi^3}{2}$$

(d)
$$\frac{\pi^3}{8}$$

16. The area of the loop formed by $y^2 = x(1-x^3)dx$ is:

(a)
$$\int_0^1 \sqrt{x-x^4} \ dx$$

(b)
$$2\int_{0}^{1} \sqrt{x-x^{4}} dx$$

(c)
$$\int_{-1}^{1} \sqrt{x-x^4} \ dx$$

(d)
$$4\int_{0}^{1/2} \sqrt{x-x^4} dx$$

130

17. If $f(x) = \min \left[x^2, \sin \frac{x}{2}, (x - 2\pi)^2 \right]$, the area bounded by the curve y = f(x), x-axis, x = 0 and $x = 2\pi$ is given by

(**Note**: x_1 is the point of intersection of the curves x^2 and $\sin \frac{x}{2}$; x_2 is the point of intersection of the curves $\sin \frac{x}{2}$ and $(x - 2\pi)^2$)

(a)
$$\int_{0}^{x_{1}} \left(\sin \frac{x}{2} \right) dx + \int_{x_{1}}^{\pi} x^{2} dx + \int_{\pi}^{x_{2}} (x - 2\pi)^{2} dx + \int_{x_{2}}^{2\pi} \left(\sin \frac{x}{2} \right) dx$$

(b)
$$\int_{0}^{x_1} x^2 dx + \int_{x_1}^{x_2} \left(\sin \frac{x}{2} \right) dx + \int_{x_2}^{2\pi} (x - 2\pi)^2 dx$$
, where $x_1 \in \left(0, \frac{\pi}{3} \right)$ and $x_2 \in \left(\frac{5\pi}{3}, 2\pi \right)$

(c)
$$\int_{0}^{x_1} x^2 dx + \int_{x_1}^{x_2} \sin\left(\frac{x}{2}\right) dx + \int_{x_2}^{2\pi} (x - 2\pi)^2 dx$$
, where $x_1 \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$ and $x_2 \in \left(\frac{3\pi}{2}, 2\pi\right)$

(d)
$$\int_{0}^{x_1} x^2 dx + \int_{x_1}^{x_2} \sin\left(\frac{x}{2}\right) dx + \int_{x_2}^{2\pi} (x - 2\pi)^2 dx$$
, where $x_1 \in \left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$ and $x_2 \in (\pi, 2\pi)$

18. The area enclosed between the curves $|x| + |y| \ge 2$ and $y^2 = 4\left(1 - \frac{x^2}{9}\right)$ is:

(a) $(6\pi - 4) sq$ units (b) $(6\pi - 8) sq$ units (c) $(3\pi - 4) sq$ units (d) $(3\pi - 2) sq$ units

Answers

	1		ı					5 1 X X		6.	200	ALCOHOL: NO				9.	(c)	10.	(a)	-
11.	(d)	12.	(b)	13.	(c)	14.	(b)	15.	(c)	16.	(b)	17.	(b)	18.	(b)					-

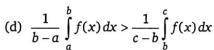
Exercise-2: One or More than One Answer is/are Correct

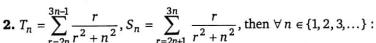
1. Let f(x) be a polynomial function of degree 3 where a < b < c and f(a) = f(b) = f(c). If the graph of f(x) is as shown, which of the following statements are **INCORRECT**? (Where

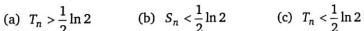
(a)
$$\int_{a}^{c} f(x) dx = \int_{b}^{c} f(x) dx + \int_{a}^{b} f(x) dx$$

(b)
$$\int_{-\infty}^{c} f(x) dx < 0$$

(c)
$$\int_{a}^{b} f(x) dx < \int_{a}^{b} f(x) dx$$







(d)
$$S_n > \frac{1}{2} \ln 2$$

- **3.** If a curve $y = a\sqrt{x} + bx$ passes through point (1, 2) and the area bounded by curve, line x = 4and x-axis is 8, then:
 - (a) a = 3
- (b) b = 3
- (c) a = -1
- (d) b = -1
- **4.** Area enclosed by the curves $y = x^2 + 1$ and a normal drawn to it with gradient –1; is equal to :
 - (a) $\frac{2}{3}$
- (c) $\frac{3}{4}$
- (d) $\frac{4}{3}$

(a, d) 4. (d) (a, b) 2. (b, c, d)

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let $f: A \to B$ $f(x) = \frac{x+a}{bx^2 + cx + 2}$, where A represent domain set and B represent range set of

function f(x), $a, b, c \in R$, f(-1) = 0 and y = 1 is an asymptote of y = f(x) and y = g(x) is the inverse of f(x).

1. g(0) is equal to:

- (a) -1
- (b) -3
- (c) $-\frac{5}{2}$
- (d) $-\frac{3}{2}$

2. Area bounded between the curves y = f(x) and y = g(x) is :

(a)
$$2\sqrt{5} + \ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$$

(b)
$$3\sqrt{5} + 2\ln\left(\frac{3+\sqrt{5}}{3-\sqrt{5}}\right)$$

(c)
$$3\sqrt{5} + 4\ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$$

(d)
$$3\sqrt{5} + 2\ln\left(\frac{3-\sqrt{5}}{3+\sqrt{5}}\right)$$

3. Area of region enclosed by asymptotes of curves y = f(x) and y = g(x) is:

- (a) 4
- (c) 12
- (d) 25

Paragraph for Question Nos. 4 to 6

For j = 0, 1, 2, ... n let S_j be the area of region bounded by the x-axis and the curve $ye^x = \sin x$ for $j\pi \le x \le (j+1)\pi$

4. The value of S_0 is :

(a)
$$\frac{1}{2}(1+e^{\pi})$$

(b)
$$\frac{1}{2}(1+e^{-\pi})$$

(c)
$$\frac{1}{2}(1-e^{-\pi})$$

(a)
$$\frac{1}{2}(1+e^{\pi})$$
 (b) $\frac{1}{2}(1+e^{-\pi})$ (c) $\frac{1}{2}(1-e^{-\pi})$ (d) $\frac{1}{2}(e^{\pi}-1)$

5. The ratio $\frac{S_{2009}}{S_{2010}}$ equals :

- (a) $e^{-\pi}$
- (c) $\frac{1}{2}e^{\pi}$
- (d) $2e^{\pi}$

6. The value of $\sum_{i=0}^{\infty} S_i$ equals to :

- (a) $\frac{e^{\pi} (1+e^{\pi})}{2(e^{\pi}-1)}$ (b) $\frac{1+e^{\pi}}{2(e^{\pi}-1)}$ (c) $\frac{1+e^{\pi}}{e^{\pi}-1}$ (d) $\frac{e^{\pi} (1+e^{\pi})}{(e^{\pi}-1)}$

Answers

2. (d) 3. (b) 1. (a) 4. (b) 5. (b) 6. (b)

Area Under Curves 133

Exercise-4 : Matching Type Problems

1.

	Column-I			Column-II	
(A)	Area of region formed by points (x, y) satisfying $[x]^2 = [y]^2$ for $0 \le x \le 4$ is equal to (where [] denotes greatest integer function)	(P)		48	
(B)	The area of region formed by points (x, y) satisfying $x + y \le 6$, $x^2 + y^2 \le 6y$ and $y^2 \le 8x$ is $\frac{k\pi - 2}{12}$, then $k = \frac{\pi}{12}$	(Q)	6	27	
(C)	The area in the first quardant bounded by the curve $y = \sin x$ and the line $\frac{2y-1}{\sqrt{2}-1} = \frac{2}{\pi} (6x - \pi) \text{ is } \left[\frac{\sqrt{3} - \sqrt{2}}{2} - \frac{(\sqrt{2} + 1)\pi}{k} \right], \text{ then } k = $			7	
(D)	If the area bounded by the graph of $y = xe^{-ax}$ $(a > 0)$ and the abscissa axis is $\frac{1}{9}$ then the value of 'a' is equal to	(S)		4	
	THE DESCRIPTION OF THE PROPERTY OF THE PROPERT	(T)		3	

Answers

1. $A \rightarrow R$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow T$

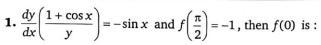
Exercise-5: Subjective Type Problems

- **1.** Let f be a differentiable function satisfying the condition $f\left(\frac{x}{y}\right) = \frac{f(x)}{f(y)} (y \neq 0, f(y) \neq 0)$ $\forall x, y \in R \text{ and } f'(1) = 2$. If the smaller area enclosed by y = f(x), $x^2 + y^2 = 2$ is A, then find [A], where $[\cdot]$ represents the greatest integer function.
- **2.** Let f(x) be a function which satisfy the equation f(xy) = f(x) + f(y) for all x > 0, y > 0 such that f'(1) = 2. Let A be the area of the region bounded by the curves y = f(x), $y = |x^3 6x^2 + 11x 6|$ and x = 0, then find value of $\frac{28}{17}A$.
- **3.** If the area bounded by circle $x^2 + y^2 = 4$, the parabola $y = x^2 + x + 1$ and the curve $y = \left[\sin^2\frac{x}{4} + \cos\frac{x}{4}\right]$, (where [] denotes the greates integer function) and x-axis is $\left(\sqrt{3} + \frac{2\pi}{3} \frac{1}{k}\right)$, then the numerical quantity k should be:
- **4.** Let the function $f: [-4, 4] \rightarrow [-1, 1]$ be defined implicitly by the equation $x + 5y y^5 = 0$. If the area of triangle formed by tangent and normal to f(x) at x = 0 and the line y = 5 is A, find $\frac{A}{13}$.
- **5.** Area of the region bounded by $[x]^2 = [y]^2$, if $x \in [1, 5]$, where [] denotes the greatest integer function, is:
- **6.** Consider $y = x^2$ and f(x) where f(x), is a differentiable function satisfying $f(x+1) + f(z-1) = f(x+z) \ \forall \ x, z \in R$ and f(0) = 0; f'(0) = 4. If area bounded by curve $y = x^2$ and y = f(x) is Δ , find the value of $\left(\frac{3}{16}\Delta\right)$
- 7. The least integer which is greater than or equal to the area of region in x y plane satisfying $x^6 x^2 + y^2 \le 0$ is:
- **8.** The set of points (x, y) in the plane statisfying $x^{2/5} + |y| = 1$ form a curve enclosing a region of area $\frac{p}{q}$ square units, where p and q are relatively prime positive integers. Find p q.

	/					Answ	/er	8				F	
1.	1	2.	7	3.	6	4.	5	5.	8	6.	2	7.	2
8.	1										.02.9		

DIFFERENTIAL EQUATIONS

Exercise-1: Single Choice Problems



2. The differential equation satisfied by family of curves $y = Ae^x + Be^{3x} + Ce^{5x}$ where A, B, C are arbitrary constants is:

(a) $\frac{d^3y}{dx^3} - 9\frac{d^2y}{dx^2} + 23\frac{dy}{dx} + 15y = 0$ (b) $\frac{d^3y}{dx^3} + 9\frac{d^2y}{dx^2} - 23\frac{dy}{dx} - 15y = 0$

(c) $\frac{d^3y}{dx^3} + 9\frac{d^2y}{dx^2} - 23\frac{dy}{dx} + 15y = 0$ (d) $\frac{d^3y}{dx^3} - 9\frac{d^2y}{dx^2} + 23\frac{dy}{dx} - 15y = 0$

3. If y = y(x) and it follows the relation $e^{xy^2} + y\cos(x^2) = 5$ then y'(0) is equal to :

4. $(x^2 + y^2) dy = xy dx$. If $y(x_0) = e$, y(1) = 1, then the value of x_0 is equal to:

(a) $\sqrt{3}e$

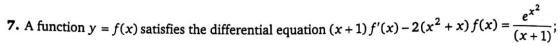
(b) $\sqrt{e^2 - \frac{1}{2}}$ (c) $\sqrt{\frac{e^2 - 1}{2}}$ (d) $\sqrt{e^2 + \frac{1}{2}}$

5. The differential equation $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$ determines a family of circles with :

- (a) Variable radii and fixed centre at (0,1)
- (b) Variable radii and fixed centre at (0, −1)
- (c) Fixed radius 1 and variable centres along x-axis
- (d) Fixed radius 1 and variable centres along y-axis

6. Interval contained in the domain of definition of non-zero solutions of the differential equation $(x-3)^2y'+y=0$ is:

(a) $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (b) $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$ (c) $\left(\frac{\pi}{8}, \frac{5\pi}{4}\right)$ (d) $(-\pi, \pi)$



 $\forall x > -1$. If f(0) = 5, then f(x) is:

(a)
$$\left(\frac{3x+5}{x+1}\right) \cdot e^{x^2}$$

(b)
$$\left(\frac{6x+5}{x+1}\right) \cdot e^{x^2}$$

(c)
$$\left(\frac{6x+5}{(x+1)^2}\right) \cdot e^{x^2}$$

(d)
$$\left(\frac{5-6x}{x+1}\right) \cdot e^{x^2}$$

8. The solution of the differential equation $2x^2y \frac{dy}{dx} = \tan(x^2y^2) - 2xy^2$ given $y(1) = \sqrt{\frac{\pi}{2}}$ is:

(a)
$$\sin(x^2y^2) - 1 = 0$$

(b)
$$\cos\left(\frac{\pi}{2} + x^2y^2\right) + x = 0$$

(c)
$$\sin(x^2y^2) = e^{x-1}$$

(d)
$$\sin(x^2y^2) = e^{2(x-1)}$$

equation whose general solution $y = C_1 \cos(x + C_2) - C_3 e^{-x + C_4} + C_5 \sin x$, where C_1, C_2, \dots, C_5 are constants is:

(a)
$$\frac{d^4y}{dx^4} - \frac{d^2y}{dx^2} + y = 0$$

(b)
$$\frac{d^3y}{dx^3} - \frac{d^2y}{dx^2} + \frac{dy}{dx} - y = 0$$

(c)
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} + y = 0$$

(d)
$$\frac{d^3y}{dx^3} + \frac{d^2y}{dx^2} + \frac{dy}{dx} = 0$$

10. If $y = e^{(\alpha+1)x}$ be solution of differential equation $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = 0$; then α is :

$$(c) -1$$

11. The order and degree of the differential equation $\left(\frac{dy}{dx}\right)^{1/3} - 4\frac{d^2y}{dx^2} - 7x = 0$ are α and β , then the value of $(\alpha + \beta)$ is :

(a) 3 (b) 4 (c) 2 (d) 5 **12.** General solution of differential equation of $f(x)\frac{dy}{dx} = f^{2}(x) + f(x)y + f'(x)y$ is:

(c being arbitary constant.)

(a)
$$y = f(x) + ce^x$$

(b)
$$y = -f(x) + ce^x$$

(c)
$$y = -f(x) + ce^x f(x)$$

(d)
$$y = c f(x) + e^x$$

13. The order and degree respectively of the differential equation of all tangent lines to parabola $x^2 = 2y$ is:

Merential Equations

14. The general solution of the differential equation $\frac{dy}{dx} + x(x+y) = x(x+y)^3 - 1$ is:

(a)
$$\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^4} \right| = x^2 + C$$
 (b) $\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^2} \right| = x^2 + C$

(b)
$$\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^2} \right| = x^2 + C$$

(c)
$$2\ln\left|\frac{(x+y+1)(x+y-1)}{(x+y)^2}\right| = x^2 + C$$
 (d) $\ln\left|\frac{(x+y+1)(x+y-1)}{(x+y)^2}\right| = x + C$

(d)
$$\ln \left| \frac{(x+y+1)(x+y-1)}{(x+y)^2} \right| = x + C$$

(where C is arbitrary constant.)

15. The general solution of $\frac{dy}{dx} = 2y \tan x + \tan^2 x$ is:

(a)
$$y \cos^2 x = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

(b)
$$y \sec^2 x = \frac{x}{2} - \frac{\sin 2x}{4} + C$$

(c)
$$y \cos^2 x = \frac{x}{2} - \frac{\cos 2x}{4} + C$$

(d)
$$y \cos^2 x = \frac{x}{2} - \frac{\sin 2x}{2} + C$$

(where C is an arbitrary constant.)

16. The solution of differential equation $\frac{d^2y}{dx^2} = \frac{dy}{dx}$, y(0) = 3 and y'(0) = 2:

(a) is a periodic function

(b) approaches to zero as $x \to -\infty$

(c) has an asymptote parallel to x-axis

(d) has an asymptote parallel to y-axis

17. The solution of the differential equation $(x^2 + 1)\frac{d^2y}{dx^2} = 2x\left(\frac{dy}{dx}\right)$ under the conditions y(0) = 1

and y'(0) = 3, is:

(a)
$$y = x^2 + 3x + 1$$

(b)
$$y = x^3 + 3x + 1$$

(c)
$$y = x^4 + 3x + 1$$

(d)
$$y = 3 \tan^{-1} x + x^2 + 1$$

18. The differential equation of the family of curves $cy^2 = 2x + c$ (where c is an arbitrary constant.)

(a)
$$\frac{xdy}{dx} = 1$$

(b)
$$\left(\frac{dy}{dx}\right)^2 = \frac{2xdy}{dx} + 1$$

(b)
$$\left(\frac{dy}{dx}\right)^2 = \frac{2xdy}{dx} + 1$$
 (c) $y^2 = 2xy \frac{dy}{dx} + 1$ (d) $y^2 = \frac{2ydy}{dx} + 1$

19. The solution of the equation $\frac{dy}{dx} + \frac{1}{x} \tan y = \frac{1}{r^2} \tan y \sin y$ is :

(a)
$$2y = \sin y (1 - 2cx^2)$$

(b)
$$2x = \cot y (1 + 2cx^2)$$

(c)
$$2x = \sin y (1 - 2cx^2)$$

(d)
$$2x \sin y = 1 - 2cx^2$$

20. Solution of the differential equation $xdy - ydx - \sqrt{x^2 + y^2}dx = 0$ is :

(a)
$$y - \sqrt{x^2 + y^2} = cx^2$$

(b)
$$y + \sqrt{x^2 + y^2} = cx$$

(c)
$$x - \sqrt{x^2 + y^2} = cx^2$$

(d)
$$y + \sqrt{x^2 + y^2} = cx^2$$

138

21. Let f(x) be differentiable function on the interval $(0, \infty)$ such that f(1) = 1 and $\lim_{t \to x} \left(\frac{t^3 f(x) - x^3 f(t)}{t^2 - x^2} \right) = \frac{1}{2} \, \forall \, x > 0, \text{ then } f(x) \text{ is :}$

(a)
$$\frac{1}{4x} + \frac{3x^2}{4}$$
 (b) $\frac{3}{4x} + \frac{x^3}{4}$ (c) $\frac{1}{4x} + \frac{3x^3}{4}$ (d) $\frac{1}{4x^3} + \frac{3x}{4}$

(b)
$$\frac{3}{4x} + \frac{x^3}{4}$$

(c)
$$\frac{1}{4x} + \frac{3x^3}{4}$$

(d)
$$\frac{1}{4x^3} + \frac{3x}{4}$$

22. The population p(t) at time 't' of a certain mouse species satisfies the differential equation $\frac{d}{dt}p(t) = 0.5p(t) - 450$. If p(0) = 850, then the time at which the population becomes zero is:

(a)
$$\frac{1}{2} \ln 18$$

23. The solution of the differential equation $\sin 2y \frac{dy}{dx} + 2\tan x \cos^2 y = 2\sec x \cos^3 y$ is:

(where C is arbitrary constant)

(a)
$$\cos y \sec x = \tan x + C$$

(b)
$$\sec y \cos x = \tan x + C$$

(c)
$$\sec y \sec x = \tan x + C$$

(d)
$$\tan y \sec x = \sec x + C$$

24. The solution of the differential equation $\frac{dy}{dx} = (4x + y + 1)^2$ is:

(where C is arbitrary constant)

(a)
$$4x + y + 1 = 2\tan(2x + y + C)$$

(b)
$$4x + y + 1 = 2\tan(x + 2y + C)$$

(c)
$$4x + y + 1 = 2\tan(2y + C)$$

(d)
$$4x + y + 1 = 2\tan(2x + C)$$

25. If a curve is such that line joining origin to any point P(x, y) on the curve and the line parallel to y-axis through P are equally inclined to tangent to curve at P, then the differential equation of the curve is:

(a)
$$x \left(\frac{dy}{dx}\right)^2 - 2y \frac{dy}{dx} = x$$

(b)
$$x \left(\frac{dy}{dx}\right)^2 + 2y \frac{dy}{dx} = x$$

(c)
$$y \left(\frac{dy}{dx}\right)^2 - 2x \frac{dy}{dx} = x$$

(d)
$$y \left(\frac{dy}{dx}\right)^2 - 2y \frac{dy}{dx} = x$$

26. If y = f(x) satisfy the differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2$; f(1) = 1; then value of f(3) equals:

27. Let y = f(x) and $\frac{x}{y} \frac{dy}{dx} = \frac{3x^2 - y}{2y - x^2}$; f(1) = 1 then the possible value of $\frac{1}{3} f(3)$ equals :

(a) 9

Differential Equations

1								A	nsı	ver	s							6 1	1
1.	(a)	2.	(d)	3.	(b)	4.	(a)	5.	(c)	6.	(a)	7.	(b)	8.	(c)	9.	(c)	10.	(b)
11.	(d)	12.	(c)	13.	(a)	14.	(b)	15.	(a)	16.	(c)	17.	(ъ)	18.					
21.	(c)	22.	(c)	23.	(c)	24.	(d)	25.	(a)	26.	(a)	27.	(c)						

Exercise-2: One or More than One Answer is/are Correct

- **1.** Let y = f(x) be a real valued function satisfying $x \frac{dy}{dx} = x^2 + y 2$, f(1) = 1, then:
 - (a) f(x) is minimum at x = 1
- (b) f(x) is maximum at x = 1

(c) f(3) = 5

- (d) f(2) = 3
- **2.** Solution of differential equation $x \cos x \left(\frac{dy}{dx} \right) + y(x \sin x + \cos x) = 1$ is:
 - (a) $xy = \sin x + c \cos x$

- (b) $xy \sec x = \tan x + c$
- (c) $xy + \sin x + c \cos x = 0$
- (d) None of these

(where C is an arbitrary constant.)

- **3.** If a differentiable function satisfies $(x-y)f(x+y)-(x+y)f(x-y)=2(x^2y-y^3) \forall x,y \in \mathbb{R}$ and f(1)=2, then:
 - (a) f(x) must be polynomial function
- (b) f(3) = 12

(c) f(0) = 0

- (d) f(3) = 13
- **4.** A function y = f(x) satisfies the differential equation

$$f(x)\sin 2x - \cos x + (1 + \sin^2 x) f'(x) = 0$$

with f(0) = 0 . The value of $f\left(\frac{\pi}{6}\right)$ equals to :

- (a) $\frac{2}{5}$
- (b) $\frac{3}{5}$
- (c) $\frac{1}{5}$
- (d) $\frac{4}{5}$
- **5.** Solution of the differential equation $(2 + 2x^2\sqrt{y}) ydx + (x^2\sqrt{y} + 2)x dy = 0$ is/are:
 - (a) $xy(x^2\sqrt{y} + 5) = c$

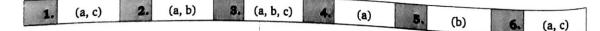
(b) $xy(x^2\sqrt{y} + 3) = c$

(c) $xy(y^2\sqrt{x} + 3) = c$

- (d) $xy(y^2\sqrt{x} + 5) = c$
- **6.** If y(x) satisfies the differential equation $\frac{dy}{dx} = \sin 2x + 3y \cot x$ and $y\left(\frac{\pi}{2}\right) = 2$ then which of the following statement(s) is/are correct?
 - (a) $y\left(\frac{\pi}{6}\right) = 0$

- (b) $y'\left(\frac{\pi}{3}\right) = \frac{9 3\sqrt{2}}{2}$
- (c) y(x) increases in the interval
- $(d) \int_{-\pi/2}^{\pi/2} y(x) dx = x$

Answers



Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

A differentiable function y = g(x) satisfies $\int (x-t+1)g(t) dt = x^4 + x^2$; $\forall x \ge 0$.

1. y = g(x) satisfies the differential equation :

(a)
$$\frac{dy}{dx} - y = 12x^2 + 2$$

(b)
$$\frac{dy}{dx} + 2y = 12x^2 + 2$$

(c)
$$\frac{dy}{dx} + y = 12x^2 + 2$$

(d)
$$\frac{dy}{dx} + y = 12x + 2$$

2. The value of g(0) equals to :

(c)
$$e^2$$

(d) Data insufficient

Paragraph for Question Nos. 3 to 5

Suppose f and g are differentiable functions such that xg(f(x)) f'(g(x))g'(x) = f(g(x)) $g'(f(x)) f'(x) \forall x \in R \text{ and } f \text{ is positive, } g \text{ is positive } \forall x \in R. \text{ Also } \int_{-\infty}^{\infty} f(g(t)) dt = \frac{1}{2} (1 - e^{-2x})$

 $\forall x \in R, g(f(0)) = 1 \text{ and } h(x) = \frac{g(f(x))}{f(g(x))} \forall x \in R.$

3. The graph of y = h(x) is symmetric with respect to line:

(a)
$$x = -1$$

(b)
$$x = 0$$

(c)
$$x = 1$$

(d)
$$x = 2$$

4. The value of f(g(0)) + g(f(0)) is equal to :

5. The largest possible value of $h(x) \forall x \in R$ is :

(b)
$$e^{1/3}$$

(d)
$$e^2$$

Paragraph for Question Nos. 6 to 8

Given a function 'g' which has a derivative g'(x) for every real x and which satisfy g'(0) = 2 and $g(x + y) = e^{y}g(x) + e^{x}g(y)$ for all x and y.

6. The function g(x) is:

(a)
$$x(2+xe^x)$$

(b)
$$x(e^x + 1)$$

(c)
$$2xe^x$$

(d)
$$x + \ln(x+1)$$

7. The range of function g(x) is:

(b)
$$\left[-\frac{2}{e},\infty\right]$$
 (c) $\left[-\frac{1}{e},\infty\right]$

(c)
$$\left[-\frac{1}{e},\infty\right]$$

142

Advanced Problems in Mathematics for JEE

8. The value of $\lim_{x \to -\infty} g(x)$ is:

(a) 0 (b) 1 (c) 2 (d) Does not exist

1. (c) 2. (a) 3. (c) 4. (b) 5. (c) 6. (c) 7. (b) 8. (a)

Differential Equations

143

Exercise-4: Matching Type Problems

1.

	Column-I (Differential equation)	1	Column-II Solution (Integral curves)
(A)	$y - x\frac{dy}{dx} = y^2 + \frac{dy}{dx}$	(P)	$y = A_1 x^2 + A_2 x + A_3$
(B)	$(2x-10y^3)\frac{dy}{dx}+y=0$	(Q)	$x^2y^2 + 1 = cy$
(C)	$\left(\frac{dy}{dx}\right)\left(\frac{d^3y}{dx^3}\right) - 3\left(\frac{d^2y}{dx^2}\right)^2 = 0$	(R)	(x+1)(1-y)=cy
(D)	$(x^2y^2 - 1)dy + 2xy^3dx = 0$	(S)	$x = A_1 y^2 + A_2 y + A_3$
		(T)	$xy^2 = 2y^5 + c$

2.

	Column-I	/	Column-II
(A)	Solution of differential equation $[3x^2y + 2xy - e^x(1+x)]dx + (x^3 + x^2)dy = 0 \text{ is :}$	(P)	$y^2(x^2 + 1 + ce^{x^2}) = 1$
(B)	Solution of differential equation $ydx - xdy - 3xy^{2}e^{x^{2}}dx = 0 \text{ is :}$	(Q)	$(x^2 + x^3)y - xe^x = c$
(C)	Solution of differential equation $\frac{dy}{dx} = xy(x^2y^2 - 1) \text{ is :}$	(R)	$\frac{x}{y} - \frac{3}{2}e^{x^2} = c$
(D)	Solution of differential equation $\frac{dy}{dx}(x^2y^3 + xy) = 1 \text{ is :}$	(S)	$\frac{1}{x} = 2 - y^2 + ce^{-y^2/2}$
		(T)	$\frac{2}{x} = 1 - y^2 + ce^{-y/2}$
	(where c is arbitrary constant).		

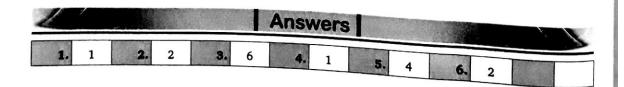
Answers

- 1. $A \rightarrow R$; $B \rightarrow T$; $C \rightarrow S$; $D \rightarrow Q$
- 2. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$

144

Exercise-5: Subjective Type Problems

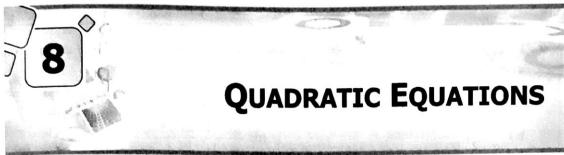
- 1. Find the value of |a| for which the area of triangle included between the coordinate axes and any tangent to the curve $x^ay = \lambda^a$ is constant (where λ is constant.).
- **2.** Let y = f(x) satisfies the differential equation xy(1+y) dx = dy. If f(0) = 1 and $f(2) = \frac{e^2}{k-e^2}$, then find the value of k.
- **3.** If $y^2 = 3\cos^2 x + 2\sin^2 x$, then the value of $y^4 + y^3 \frac{d^2y}{dx^2}$ is
- **4.** Let f(x) be a differentiable function in $[-1, \infty)$ and f(0) = 1 such that $\lim_{t \to x+1} \frac{t^2 f(x+1) (x+1)^2 f(t)}{f(t) f(x+1)} = 1.$ Find the value of $\lim_{x \to 1} \frac{\ln(f(x)) \ln 2}{x-1}$.
- **5.** Let $y = (a \sin x + (b+c)\cos x)e^{x+d}$, where a, b, c and d are parameters represent a family of curves, then differential equation for the given family of curves is given by $y'' \alpha y' + \beta y = 0$, then $\alpha + \beta = 0$
- **6.** Let y = f(x) satisfies the differential equation xy(1+y)dx = dy. If f(0) = 1 and $f(2) = \frac{e^2}{k-e^2}$, then find the value of k.



Algebra

- 8. Quadratic Equations
- 9. Sequence and Series
- 10. Determinants
- 11. Complex Numbers
- 12. Matrices
- 13. Permutation and Combinations
- 14. Binomial Theorem
- 15. Probability
- 16. Logarithms

Chapter 8 - Quadratic Equations



MATERIAL PROPERTY.	OF THE OWNER OF STREET, STREET		Committee of the Commit	CHARLES OF STREET
E	xercise-1 : Single (Choice Problems		
1.	Sum of values of x and	dy satisfying the equat	tion $3^x - 4^y = 77$; $3^{x/2}$	$-2^y = 7 \text{ is}$:
	(a) 2	(b) 2	(a) A	(d) 5
2.	If $f(x) = \prod_{i=1}^{3} (x - a_i) +$	$\sum_{i=1}^{3} a_i - 3x \text{ where } a_i < 0$	a_{i+1} for $i = 1, 2$, then $f($	x) = 0 has :
	(a) only one distinct		(b) exactly two distin	
	(c) exactly 3 distinct	real roots	(d) 3 equal real roots	S
3.	Complete set of real v	alues of 'a' for which th	ne equation $x^4 - 2ax^2 +$	$-x+a^2-a=0 \text{ has all its}$
	roots real:			
	1 4		(c) [2, ∞)	(d) [0, ∞)
4.	The cubic polynomial	with leading coefficien $x^3 - 3x^2 - 4x + 12 = 0$	it unity all whose roots is denoted as $f(x)$ the	are 3 units less than the $f'(x)$ is equal to:
	roots of the equation	(b) $3x^2 + 12x + 5$	(a) $2x^2 + 12x = 5$	(d) 2 × 2 12 × 5
	(a) $3x^2 - 12x + 5$	(b) $3x^2 + 12x + 5$	(c) $3x + 12x - 3$	x-1 =0 will have exactly
5.		$k \in R$) for which the eq	uation x - + x + 5- x	t-1 -0 will have exactly
	four real roots, is:	(b) (-4, 4)	(c) (-4, 2)	(d) (-1, 0)
	(a) (-2, 4)	(D) (-4, 4)		(4) (1, 0)
6.	The number of intege	rs satisfying the inequa	$\frac{1}{x+6} \le -18:$	
		002727-123	(a) 0	(d) 3
7	The product of uncom	mon real roots of the tw	vo polynomials $p(x) = 3$	$x^4 + 2x^3 - 8x^2 - 6x + 15$
,.	and $q(x) = x^3 + 4x^2$	-x - 10 is:		
		(b) 6	(c) 8	(d) 12
Q		tue volue	s of λ for when λ	hich the expression
3.	$f(x, y) = x^2 + \lambda xy + \frac{1}{2}$	$y^2 - 5x - 7y + 6$ can be	e resolved as a product o	of two linear factors, then
	the value of $3\lambda_1 + 2\lambda_2$	2 is:		
	(a) 5	(b) 10	(c) 15	(d) 20

		Advanceu I I	otems in maniem	, 2
9.	Let α , β be the roots of the quadratic eq	ustion $ax^2 + bx + c = 0$	then the roots of	the equation
	$a(x+1)^2 + b(x+1)(x-2) + c(x-2)^2$	= 0 are:		.91
	(a) $\frac{2\alpha+1}{\alpha-1}$, $\frac{2\beta+1}{\beta-1}$	(b) $\frac{2\alpha-1}{\alpha+1}$, $\frac{2\beta-1}{\beta+1}$	1	
	(c) $\frac{\alpha+1}{\alpha-2}$, $\frac{\beta+1}{\beta-2}$	(d) $\frac{2\alpha+3}{\alpha-1}$, $\frac{2\beta+1}{\beta-1}$	3	
10	~ 2 p 2	w - p	-	120
10.	If $a, b \in R$ distinct numbers satisfyin minimum value of $ a-b $ is:	g a-1 + b-1 = a +	b = a+1 + b+	1 , then the
	(a) 3 (b) 0	(c) 1	(d) 2	
11.	The smallest positive integer p for which			ve for atleas
	one real x is:			
	(a) 3 (b) 4	(c) 5	(d) 6	32
12.	For $x \in R$, the expression $\frac{x^2 + 2x + c}{x^2 + 4x + 3c}$	can take all real values i	fce	
		can take an rear varues i	10 6.	
	(a) (1, 2)	(b) [0, 1]	a 9	4 01
13	(c) (0, 1) If 2 lies between the roots of the control of the cont	(d) (-1, 0)		
10.	If 2 lies between the roots of the eq. $(2 \times 1)^m$	$\int_{0}^{\infty} \frac{dt}{dt} = \int_{0}^{\infty} \frac{dt}{dt} = 0$	$(m \in R)$ then	the value of
	$\left[\left(\frac{3 x }{9+x^2} \right)^m \right] $ is:			
	(where [-] denotes greatest integer func	tion)		
	(a) 0 (b) 1	(c) 8	(d) 27	
14.	The number of integral roots of the equ	$x^8 - 24x^7 - 18x^5$	$+39x^2+1155$	= 0 is :
	(a) 0 (b) 2	(c) 4	(d) 6	
15.	If the value of $m^4 + \frac{1}{m^4} = 119$, then the	e value of $\left m^3 - \frac{1}{m^3} \right =$		
	(a) 11 (b) 18	(c) 24	(d) 36	*
16.	If the equation $ax^2 + 2bx + c = 0$ and a then their other roots are the roots of the	$1x^2 + 2cx + b = 0, a \neq 0,$	$b \neq c$, have a co	ommon root.
	then then other room are the room of th	re quadratic equation:		The state of the s
	(a) $a^2x(x+1) + 4bc = 0$	(b) $a^2x(x+1) +$	8bc = 0	
	(c) $a^2x(x+2) + 8bc = 0$	$(d) a^2 = (1 - a)$		
17.	If $\cos \alpha$, $\cos \beta$ and $\cos \gamma$ are the roots of the radius of the circle whose centre is (2)	te equation $9x^3 - 9x^2 -$	$x+1=0$; α , β	/ ∈ [0
	A STATE OF THE STA	$\Sigma \alpha$, $\Sigma \cos \alpha$) and passing	through (2 sin-1	(ton - 1/4)
			8 (2 5111	$(\tan \pi/4), 4$
	(a) 2 (b) 3	(c) 4	(d) 5	
18.	For real values of x , the value of express	sion $\frac{11x^2 - 12x - 6}{2}$.		
		$x^2 + 4x + 2$		

149

(a) lies between -17 and -3

(b) does not lie between -17 and -3

(c) lies between 3 and 17

(d) does not lie between 3 and 17

19. $\frac{x+3}{x^2-x-2} \ge \frac{1}{x-4}$ holds for all x satisfying:

(a) -2 < x < 1 or x > 4

(b) -1 < x < 2 or x > 4

(c) x < -1 or 2 < x < 4

(d) x > -1 or 2 < x < 4

20. If x = 4 + 3i (where $i = \sqrt{-1}$), then the value of $x^3 - 4x^2 - 7x + 12$ equals:

(b) 48 + 36i

(c) -256 + 12i

21. Let $f(x) = \frac{x^2 + x - 1}{x^2 - x + 1}$, then the largest value of $f(x) \forall x \in [-1, 3]$ is:

(c) 1

22. In above problem, the range of $f(x) \forall x \in [-1, 1]$ is:

(a) $\left[-1, \frac{3}{5}\right]$

(b) $\left[-1, \frac{5}{3} \right]$ (c) $\left[-\frac{1}{3}, 1 \right]$

(d) [-1, 1]

23. If the roots of the equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal in magnitude but opposite in sign, then

the product of the roots is:

(a) $-2(p^2+q^2)$ (b) $-(p^2+q^2)$ (c) $-\frac{(p^2+q^2)}{2}$

24. If a root of the equation $a_1 x^2 + b_1 x + c_1 = 0$ is the reciprocal of a root of the equation $a_2x^2 + b_2x + c_2 = 0$, then:

(a) $(a_1 a_2 - c_1 c_2)^2 = (a_1 b_2 - b_1 c_2)(a_2 b_1 - b_2 c_1)$

(b) $(a_1a_2 - b_1b_2)^2 = (a_1b_2 - b_1c_2)(a_2b_1 - b_2c_1)$

(c) $(b_1c_2 - b_2c_1)^2 = (a_1b_2 - b_1c_2)(a_2b_1 + b_2c_1)$

(d) $(b_1c_2 - b_2c_1)^2 = (a_1b_2 + b_1c_2)(a_2b_1 - b_2c_1)$

25. If $\alpha \neq \beta$ but $\alpha^2 = 5\alpha - 3$ and $\beta^2 = 5\beta - 3$, then the equation with roots $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$ is:

(a) $3x^2 - 25x + 3 = 0$

(b) $x^2 + 5x - 3 = 0$

(c) $x^2 - 5x + 3 = 0$

(d) $3x^2 - 19x + 3 = 0$

26. If the difference between the roots of $x^2 + ax + b = 0$ is same as that of $x^2 + bx + a = 0$, $a \ne b$, then:

(a) a+b+4=0 (b) a+b-4=0

(c) a-b-4=0

27. If $\tan \theta_i$; i = 1, 2, 3, 4 are the roots of equation $x^4 - x^3 \sin 2\beta + x^2 \cos 2\beta - x \cos \beta - \sin \beta = 0$. then $tan(\theta_1 + \theta_2 + \theta_3 + \theta_4) =$

(a) sinβ

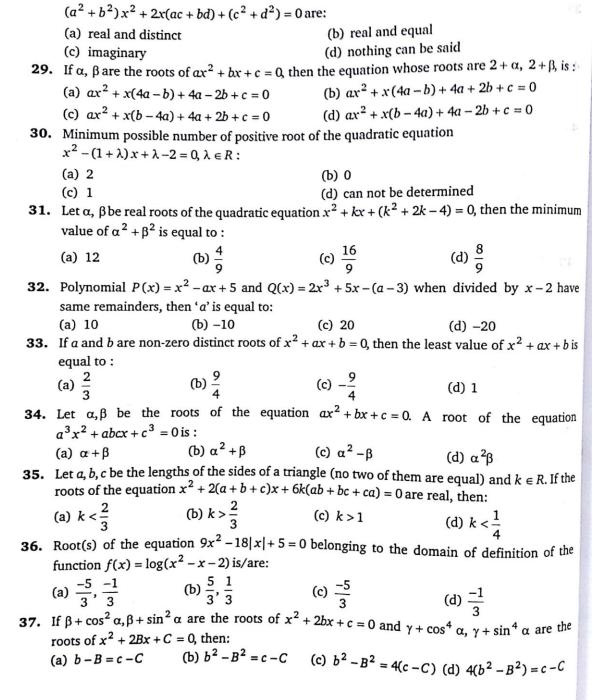
(c) tan \beta

(d) cot \(\beta \)

28. Let a, b, c, d are positive real numbers such that $\frac{a}{b} \neq \frac{c}{d}$, then the roots of the equation:

150

Advanced Problems in Mathematics for JEE



38.	Minimum value of $ x $	-p + x-15 + x-p-	15 . If $p \le x \le 15$ and 0	< p	< 15 :

(b) 15

(c) 10

39. If the quadratic equation $4x^2 - 2x - m = 0$ and $4p(q-r)x^2 - 2q(r-p)x + r(p-q) = 0$ have a common root such that second equation has equal roots then the value of m will be:

(c) 2

40. The range of k for which the inequality $k\cos^2 x - k\cos x + 1 \ge 0 \forall x \in (-\infty, \infty)$ is :

(a) $k > -\frac{1}{2}$

(b) k > 4

(c) $-\frac{1}{2} \le k \le 4$ (d) $\frac{1}{2} \le k \le 5$

41. If $\frac{1+\alpha}{1-\alpha}$, $\frac{1+\beta}{1-\beta}$, $\frac{1+\gamma}{1-\gamma}$ are roots of the cubic equation f(x)=0 where α , β , γ are the roots of the cubic equation $3x^3 - 2x + 5 = 0$, then the number of negative real roots of the equation f(x) = 0 is:

(a) 0

(b) 1

42. The sum of all integral values of λ for which $(\lambda^2 + \lambda - 2) x^2 + (\lambda + 2) x < 1 \forall x \in R$, is:

(a) -1 (b) -3 (c) 0 **43.** If α , β , γ , $\delta \in R$ satisfy $\frac{(\alpha + 1)^2 + (\beta + 1)^2 + (\gamma + 1)^2 + (\delta + 1)^2}{\alpha + \beta + \gamma + \delta} = 4$

If biquadratic equation $a_0x^4 + a_1x^3 + a_2x^2 + a_3x + a_4 = 0$ has the roots

$$\left(\alpha + \frac{1}{\beta} - 1\right) \left(\beta + \frac{1}{\gamma} - 1\right) \left(\gamma + \frac{1}{\delta} - 1\right) \left(\delta + \frac{1}{\alpha} - 1\right)$$
. Then the value of a_2/a_0 is :

(d) none of these

44. If the complete set of value of x satisfying $|x-1|+|x-2|+|x-3| \ge 6$ is $(-\infty, a] \cup [b, \infty)$, then a+b=:

45. If exactly one root of the quadratic equation $x^2 - (a+1)x + 2a = 0$ lies in the interval (0, 3). then the set of value 'a' is given by:

(a) $(-\infty, 0) \cup (6, \infty)$

(b) $(-\infty, 0] \cup (6, \infty)$

(c) $(-\infty, 0] \cup [6, \infty)$

46. The condition that the root of $x^3 + 3px^2 + 3qx + r = 0$ are in H.P. is:

(a) $2p^3 - 3pqr + r^2 = 0$

(b) $3p^3 - 2pqr + p^2 = 0$

(c) $2q^3 - 3pqr + r^2 = 0$

(d)
$$r^3 - 3pqr + 2q^3 = 0$$

47. If x is real and $4y^2 + 4xy + x + 6 = 0$, then the complete set of values of x for which y is real,

(a) $x \le -2$ or $x \ge 3$

(b) $x \le 2$ or $x \ge 3$

(c) $x \le -3$ or $x \ge 2$

(d) $-3 \le x \le 2$

48. The solution of the equation $\log_{\cos x^2}(3-2x) < \log_{\cos x^2}(2x-1)$ is :

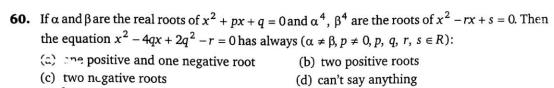
(a) (1/2, 1)

(b) $(-\infty, 1)$

(c) (1/2, 3)

(d) $(1, \infty) - \sqrt{2n\pi}, n \in \mathbb{N}$

Advanced Problems in Mathematics for JEE



61. If $x^2 + px + 1$ is a factor of $ax^3 + bx + c$, then:

(a)
$$a^2 + c^2 = -ab$$
 (b) $a^2 + c^2 = ab$ (c) $a^2 - c^2 = ab$ (d) $a^2 - c^2 = -ab$

62. In a $\triangle ABC \tan \frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$ are in H.P., then the value of $\cot \frac{A}{2} \cot \frac{C}{2}$ is:

(a) 3 (b) 2 (c) 1 (d) $\sqrt{3}$ **63.** Let $f(x) = 10 - |x - 10| \forall x \in [-9, 9]$, if *M* and *m* be the maximum and minimum value of f(x)

63. Let $f(x) = 10 - |x - 10| \forall x \in [-9, 9]$, if M and m be the maximum and minimum value of f(x) respectively, then:

(a) M + m = 0(b) 2M + m = -9(c) 2M + m = 7(d) M + m = 7

64. Solution of the quadratic equation $(3|x|-3)^2 = |x|+7$, which belongs to the domain of the function $y = \sqrt{(x-4)x}$ is:

(a) $\pm \frac{1}{9}$, ± 2 (b) $\frac{1}{9}$, 8 (c) -2, $-\frac{1}{9}$ (d) $-\frac{1}{9}$, 8

65. Number of real solutions of the equation $x^2 + 3|x| + 2 = 0$ is : (a) 0 (b) 1 (c) 2 (d) 4

66. If the roots of equation $x^2 - bx + c = 0$ be two consecutive integers, then $b^2 - 4c = 0$ (a) 3 (b) -2 (c) 1 (d) 2

67. If x is real, then maximum value of $\frac{3x^2 + 9x + 17}{3x^2 + 9x + 7}$ is:

(a) 41 (b) 1 (c) $\frac{17}{7}$ (d) $\frac{1}{4}$

68. If $\frac{x^2 + 2x + 7}{2x + 3} < 6$, $x \in R$ then:

(a) $x \in \left(-\infty, -\frac{3}{2}\right) \cup (11, \infty)$ (b) $x \in (-\infty, -1) \cup (11, \infty)$

(c) $x \in \left(-\frac{3}{2}, -1\right)$ (d) $x \in \left(-\infty, -\frac{3}{2}\right) \cup (-1, 11)$

69. If x is real, then range of $\frac{3x-2}{7x+5}$ is:

(a) $R - \left\{\frac{2}{5}\right\}$ (b) $R - \left\{\frac{3}{7}\right\}$ (c) $(-\infty, \infty)$ (d) $R - \left\{\frac{-2}{5}\right\}$

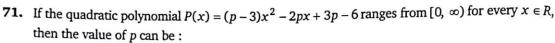
70. Let A denotes the set of values of x for which $\frac{x+2}{x-4} \le 0$ and B denotes the set of values of x for which $x^2 - ax - 4 \le 0$. If B is the subset of A, then a **CAN NOT** take the integral value :

(a) 0

(b) 1

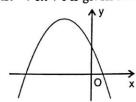
(c) 2

(d) 3



(d) 7

72. If graph of the quadratic $y = ax^2 + bx + c$ is given below:



then:

(a) a < 0, b > 0, c > 0

(b) a < 0, b > 0, c < 0

(c) a < 0, b < 0, c > 0

(d) a < 0, b < 0, c < 0

73. If quadratic equation $ax^2 + bx + c = 0$ does not have real roots, then which of the following may be false:

(a) a(a-b+c) > 0

(b) c(a-b+c) > 0

(c) b(a-b+c) > 0

(d) (a+b+c)(a-b+c) > 0

74. Minimum value of $y = x^2 - 3x + 5$, $x \in [-4, 1]$ is:

(c) 0

(d) 9

75. If $3x^2 - 17x + 10 = 0$ and $x^2 - 5x + m = 0$ has a common root, then sum of all possible real values of 'm' is:

(a) 0

(b) $-\frac{26}{9}$ (c) $\frac{29}{9}$ (d) $\frac{26}{3}$

76. For real numbers *x* and *y*, if $x^2 + xy - y^2 + 2x - y + 1 = 0$, then :

(a) y can not be between 0 and $\frac{8}{5}$

(b) y can not be between $-\frac{8}{5}$ and $\frac{8}{5}$

(c) y can not be between $-\frac{8}{5}$ and 0

(d) y can not be between $-\frac{16}{5}$ and 0

77. If $3x^4 - 6x^3 + kx^2 - 8x - 12$ is divisible by x - 3, then it is also divisible by :

(a) $3x^2 - 4$

(b) $3x^2 + 4$

(c) $3x^2 + x$

(d) $3x^2 - x$

78. The complete set of values of a so that equation $\sin^4 x + a \sin^2 x + 4 = 0$ has at least one real root is:

(a) $(\infty, -5]$

(b) $(-\infty, 4] \cup [4, \infty)$

(c) $(-\infty, -4]$

(d) $[4, \infty)$

79. Let r, s, t be the roots of the equation $x^3 + ax^2 + bx + c = 0$, such $(rs)^2 + (st)^2 + (rt)^2 = b^2 - kac$, then k =

(a) 1

(b) 2

(c) 3

(d) 4

Quan	anc Equations			
80.	If the roots of the cubic	$x^3 + ax^2 + bx + c = 0$	are three consecutive p	ositive integers, then the
	value of $\frac{a^2}{b+1}$ =			
		(b) 2	(c) 3	(d) 4
81.				possible of the equation
	$(3x^2 + kx + 3)(x^2 + kx)$	(-1) = 0 is:	or or anomore remains	•
	(a) 0	(b) 2	(c) 3	(d) 4
	3.5			381 N
82.	If r and s are variables	satisfying the equation	$1 \frac{1}{r+s} = \frac{1}{r} + \frac{1}{s}$. The val	ue of $\left(\frac{1}{s}\right)$ is equal to:
	(a) 1		(b) −1	
	(c) 3		(d) not possible to de	
83.	Let $f(x) = x^2 + ax + b$. If the maximum an	d the minimum value	es of $f(x)$ are 3 and 2
	respectively for $0 \le x$:	\leq 2, then the possible o		
	(a) (-2, 3)	(b) (-3/2, 2)		(d) $(-5/2, 2)$
84.	The roots of the equat	$ion x^2 - x - 6 = x + 2$	are given by :	
	(a) -2, 2, 4	(b) 0, 1, 4	(c) -2 , 1, 4	(d) 0, 2, 4
85.	If a, b, c be the sides o	f $\triangle ABC$ and equations	$ax^2 + bx + c = 0 \text{ and } 5$	$x^2 + 12x + 13 = 0$ have a
	common root, then ∠			
	(a) 60°	(b) 90°	(c) 120°	(d) 45°
86.	If α , β and γ are thre	e real roots of the equ	uation $x^3 - 6x^2 + 5x -$	1 = 0, then the value of
	$\alpha^4 + \beta^4 + \gamma^4$ is:			
	(a) 250	(b) 650		(d) 950
97	If one of the roots of t	the equation $2x^2 - 6x + 6$	$k = 0$ is $\frac{\alpha + 5i}{k}$, then the	te value of α and k are :
0/.			8 -	
	(a) $\alpha = 3, k = 8$	(b) $\alpha = \frac{3}{2}, k = 17$	(c) $\alpha = -3$, $k = -17$	(d) $\alpha = 3, k = 17$
22	Let r. and x. be the	real roots of the equ	ation $x^2 - (k-2)x + (k-2)x$	$(2^2 + 3k + 5) = 0$, then the
00.	maximum value of x_1^2	$^{2} + x_{2}^{2}$ is:		
	maximum varae or a	41.40	, 50	(4)
	(a) 19	(b) 18	(c) $\frac{50}{9}$	(d) non-existent
90	The complete set of V	alues of 'a' for which th	ne inequality $(a-1) x^2$	$-(a+1)x+(a-1) \ge 0$ is
07.	true for all $x \ge 2$.		•	
		(1) (- 1)	(c) $\left(-\infty, \frac{7}{3}\right]$	(d) $\left[\frac{7}{3}, \infty\right)$
	(a) $\left(\frac{3}{7}, 1\right)$	(b) (-∞, 1)	(-7	Lo
90	If α , β be the roots of	of $4x^2 - 17x + \lambda = 0$, λ	$\in R$ such that $1 < \alpha < 1$	2 and $2 < \beta < 3$, then the
, ,	number of integral va	lues of λ is :		
	(a) 1	(b) 2	(c) 3	(d) 4

defined

 $P(x) = a_1 x^2 + 2b_1 x + c_1$, $Q(x) = a_2 x^2 + 2b_2 x + c_2 \cdot P(x)$ and Q(x) both take positive values

on

quadratic

(a) $f(x) < 0 \forall x \in R$ (b) $f(x) > 0 \forall x \in R$

100. The

polynomials

 $\forall x \in R$. If $f(x) = a_1 a_2 x^2 + b_1 b_2 x + c_1 c_2$, then:

157

Quadratic Equations

	(c) f(x) takes both po(d) Nothing can be sa	ositive and negative valid about $f(x)$	lues	
101.			has a solution then a	possible value of $(a + b)$
	equals		orages at compression of the	***
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d) π
102.	Let α , β be the roots of	$x^2 - 4x + A = 0 \text{ and } \gamma,$	δ be the roots of $x^2 - 36$	$\delta x + B = 0$. If α , β , γ , δ form
		$dA^t = B$ then the value		
	(a) 4	(b) 5	(c) 6	(d) 8
103.	How many roots does	the following equation	n possess $3^{ x }$ ($ 2- x $)) = 1 ?
	(a) 2	(b) 3	(c) 4	(d) 6
104.	If $\cot \alpha$ equals the int	tegral solution of inequ	iality $4x^2 - 16x + 15 <$	0 and $\sin \beta$ equals to the
	slope of the bisector of	of the first quadrant, th	en $\sin(\alpha + \beta)\sin(\alpha - \beta)$	
	(a) $-\frac{3}{5}$	(b) $-\frac{4}{5}$	(c) $\frac{2}{\sqrt{2}}$	(d) 3
105.	Consider the function	s $f_1(x) = x$ and $f_2(x) =$	$= 2 + \log_e x, x > 0$, when	re e is the base of natural
	logarithm. The graphs	s of the functions inters	sect:	
			(b) once in (0, 1) and	
	(c) once in (0, 1) and	l once in (e, e^2)	(d) more than twice	in (0, ∞)
106.	The sum of all the rea	1 roots of equation $x^4 - 3x^3 - 2x^2 - 3x + $	1 = 0 is:	
	(a) 1	(b) 2	(c) 3	(d) 4
107.	If α , β ($\alpha < \beta$) are the i	real roots of the equatio	$nx^2 - (k+4)x + k^2 - 1$	$2 = 0$ such that $4 \in (\alpha, \beta)$
	; then the number of i	integral values of k equ	al to :	
	(a) 4	(b) 5	(c) 6	(d) 7
108.			$1x^2 + kx + (k^2 + 2k - 4)$) = 0, then the maximum
	value of $(\alpha^2 + \beta^2)$ is e	qual to :		
	(a) 9	(b) 10	(c) 11	(d) 12
109.	Let $f(x) = a^x - x \ln a$,	a > 1. Then the comple	te set of real values of x	for which $f'(x) > 0$ is:
	(a) (1, ∞)	(b) (−1, ∞)	(c) (0, ∞)	(d) (0, 1)
110.	(a) (1, ∞)If a, b and c are the ro	oots of the equation x^3	$+2x^2+1=0$, find $\begin{bmatrix} a \\ b \\ c \end{bmatrix}$	b c c a : a b
	(a) 8	(b) -8	(c) 0	(d) 2
111.	Let α, β are the two re			$q \neq 0$. If the quadratic
	equation $g(x) = 0$ has	two roots $\alpha + \frac{1}{\alpha}, \beta + \frac{1}{\beta}$	such that sum of roots	s is equal to product of
	roots, then the comple			

158			Advanced Problem	ns in Mathematics for JEE
	(a) $\left[\frac{1}{3},3\right]$	(b) $\left(\frac{1}{3},3\right]$	(c) $\left[\frac{1}{3},3\right)$	$(d)\left(-\infty,\frac{1}{3}\right)\cup(3,\infty)$
112.	If the equation $\ln(x^2)$	$+5x$) $-\ln(x+a+3) =$	0 has exactly one solut	ion for x , then number of
	integers in the range	of a is:		
	(a) 4	(b) 5	(c) 6	(d) 7
113.	$Let f(x) = x^2 + \frac{1}{x^2} -$	$6x - \frac{6}{x} + 2$, then minim	num value of $f(x)$ is:	
	(a) -2	(b) -8	(c) -9	(d) -12
114.	If $x^2 + bx + b$ is a fact	$x = x^3 + 2x^2 + 2x + 6$	$c(c \neq 0)$, then $b-c$ is:	
			(c) 0	(d) -2
115.	If roots of $x^3 + 2x^2 +$	$-1 = 0$ are α , β and γ , the	en the value of $(\alpha \beta)^3$ +	$(\beta \gamma)^3 + (\alpha \gamma)^3$, is:
	(a) -11	(b) 3	(c) 0	(d) -2
116.			n possess $3^{ x }(2- x)$	A STATE OF THE STA
	(a) 2	(b) 3		(d) 6
117.	The sum of all the re-	al roots of equation x^4	$-3x^3 - 2x^2 - 3x + 1 =$	0 is :
	(a) 1	(b) 2	(c) 3	(d) 4
118.		107 (F2)		1 = 0 then the value of
	$\sum_{r=1}^{\infty} (\alpha^r + \beta^r) \text{ is :}$			
	(a) 2	(b) 3	(c) 6	(d) 0
119.	The number of value(= 0 is/are:	(s) of x satisfying the eq	uation (2011) ^x + (2012	$(2013)^x + (2013)^x - (2014)^x$
	(a) exactly 2	(b) exactly 1	(c) more than one	(d) 0
120.	If α , β ($\alpha < \beta$) are the r	eal roots of the equation	$n x^2 - (k+4)x + k^2 - 1$	$2 = 0$ such that $4 \in (\alpha, \beta)$;
	then the number of ir	ntegral values of k equa	ls to :	$-$ vouch that $+ \in (\alpha, p)$,
	(a) 4	(b) 5	(c) 6	(d) 7
121.	Let α , β be real roots o	f the quadratic equation	$\ln x^2 + kx + (k^2 + 2k - 4)$	(d) 7) = 0, then the maximum
	value of $(\alpha^2 + \beta^2)$ is ϵ	equal to :	9	, and the maximum
	(a) 9	(b) 10	(c) 11	(d) 12
122.	The exhaustive set of	values of a for which in	nequation $(a-1)x^2-(a-1)$	(d) 12 $(a+1)x+a-1 \ge 0$ is true
	$\forall x \ge 2$.		-> (
	(a) (-∞,1)	(b) $\left[\frac{7}{3},\infty\right)$	(c) $\left[\frac{3}{7},\infty\right]$	(d) None of these
123.	If the equation $x^2 + a$	$x + 12 = 0, x^2 + bx + 15$	$5 = 0$ and $x^2 + (a + b) x$	+ 36 = 0 have a common
	positive root, then b –	2a is equal to.		o - o have a common
	(a) -6	(b) 22	(c) 6	(d) -22
				(-) 44

Quadr	ratic Equations			159
124	The equation $e^{\sin x}$ –	a-sin x 4 Ohan		
124.	(a) infinite number of		(h) == ===1 ====	
	(c) exactly one real i		(b) no real root	roots
125	1571.70 a.u. 157		(d) exactly four real	value of the function
125.	$f(x) = 3\sin^4 x - \cos^6$	\hat{x} is:	n and minimum v	value of the function
	(a) $\frac{3}{2}$	(b) $\frac{5}{2}$	(c) 3	(d) 4
126.	If α , β are the roots of	of $x^2 - 3x + \lambda = 0$ ($\lambda \in R$?) and $\alpha < 1 < \beta$, then t	he true set of values of λ
	equals:		•	
	(a) $\lambda \in \left(2, \frac{9}{4}\right]$	(b) $\lambda \in \left[-\infty, \frac{9}{4}\right]$	(c) $\lambda \in (2, \infty)$	(d) $\lambda \in (-\infty, 2)$
127.				oot common such that
				and minimum values of
	a+b+c is:			
	(a) 196	(b) 284	(c) 182	(d) 126
128.				linates at each instant of
			$x_B = 1 - t$ and $y_B = t$.	The minimum distance
	between particles A	1		[5]
	(a) $\frac{1}{5}$	(b) $\frac{1}{\sqrt{5}}$		(d) $\sqrt{\frac{2}{3}}$
129.	If $a \neq 0$ and the equa	$ax^2 + bx + c = 0 ha$	as two roots α and β su	ch that $\alpha < -3$ and $\beta > 2$,
	which of the following	ig is always true ?		
	(a) $a(a+ b +c) > 0$		(b) $a(a+ b +c) < 0$	
	(c) $9a - 3b + c > 0$		(d) $(9a-3b+c)(4a+$	
130.	The number of negat	ive real roots of the equ	lation $(x^2 + 5x)^2 - 24$	$=2(x^2+5x)$ is:
	(a) 4	(b) 3	(c) 2	(d) 1
131.	The number of real v	alues of x satisfying the	e equation $3 x-2 + 1-1 $	-5x +4 3x+1 =13 is:
	(a) 1	(b) 4	(c) 2	(d) 3
132.	If $\log_{\cos x} \sin x \ge 2$ and	$d \ 0 \le x \le 3\pi \text{ then } \sin x$	lies in the interval	
	(a) $\left \frac{\sqrt{5}-1}{1}, 1 \right $	$(b)\left[0,\frac{\sqrt{5}-1}{2}\right]$	(c) $\left \frac{1}{-}, 1 \right $	(d) none of these
	2	2	[2]	()
133.	Let $f(x) = x^2 + bx + b$	c, minimum value of $f($	x) is –5, then absolute	value of the difference of
	the roots of $f(x)$ is:			
	(a) 5		(b) $\sqrt{20}$	
	(c) $\sqrt{15}$		(d) Can't be determine	ned
134.	Sum of all the solution	ons of the equation $ x - x $		
	(a) $\frac{6}{7}$	(b) $\frac{8}{7}$	(c) $\frac{58}{63}$	(d) $\frac{8}{45}$
	7	7	63	45

135. Let $f(x) = x^2 + \frac{1}{x^2} - 6x - \frac{6}{x} + 2$, then minimum value of f(x) is:

(a) -2 (b) -8 (c) -9 (d) -12 **136.** If a+b+c=1, $a^2+b^2+c^2=9$ and $a^3+b^3+c^3=1$, then the value of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$ is :

137. If roots of $x^3 + 2x^2 + 1 = 0$ are α , β and γ , then the value of $(\alpha\beta)^3 + (\beta\gamma)^3 + (\alpha\gamma)^3$, is :

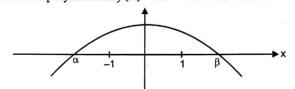
(a) -11

(d) -2

138. If $x^2 + bx + b$ is a factor of $x^3 + 2x^2 + 2x + c$ ($c \ne 0$), then b - c is:

(d) -2

139. The graph of quadratic polynomical $f(x) = ax^2 + bx + c$ is shown below



(a) $\frac{c}{a} |\beta - \alpha| < -2$ (b) $f(x) > 0 \,\forall \, x > \beta$ (c) ac > 0

(d) $\frac{c}{a} > -1$

140. If $f(x) = \frac{x^2 - 3x + 4}{x^2 + 3x + 4}$, then complete solution of 0 < f(x) < 1, is :

(a) $(-\infty, \infty)$

(b) (0, ∞)

(d) $(0,1) \cup (2,\infty)$

141. If α, β, γ are the roots of the equation $x^3 + 2x^2 - x + 1 = 0$, then value of $\frac{(2-\alpha)(2-\beta)(2-\gamma)}{(2+\alpha)(2+\beta)(2+\gamma)}$

(a) 5

(b) -5

(c) 10

142. If α and β are roots of the quadratic equation $x^2 + 4x + 3 = 0$, then the equation whose roots are $2\alpha + \beta$ and $\alpha + 2\beta$ is:

(a) $x^2 - 12x + 35 = 0$ (b) $x^2 + 12x - 33 = 0$ (c) $x^2 - 12x - 33 = 0$ (d) $x^2 + 12x + 35 = 0$

143. If a, b, c are real distinct numbers such that $a^3 + b^3 + c^3 = 3abc$, then the quadratic equation $ax^2 + bx + c = 0$ has

(a) Real roots

(b) At least one negative root

(c) Both roots are negative

Non real roots

144. If the equation $x^2 + ax + 12 = 0$, $x^2 + bx + 15 = 0$ and $x^2 + (a+b)x + 36 = 0$ have a common positive root, then b - 2a is equal to.

(a) -6

(b) 22

(c) 6

(d) -22

145.				onal number, $a \neq 1$. It is				
	given that x_1, x_2 and	$x_1 x_2$ are the real roots	s of the equation. Then	$x_1 x_2 \left(\frac{a+1}{b+c} \right) =$				
	(a) 1	(b) 2	(c) 3	(d) 4				
146.		values of a for which	inequation $(a-1)x^2-($	$(a+1)x + (a-1) \ge 0$ is true				
	$\forall x \geq 2$.	Γ- \	Γ ₀ \					
	(a) (-∞,1)	(b) $\left[\frac{7}{3},\infty\right)$	(c) $\left[\frac{3}{7},\infty\right)$	(d) None of these				
147.	The number of real s	olutions of the equation	n					
		$x^2 - 3 x + 2 = 0$						
	(a) 2	(b) 4	(c) 1	(d) 3				
148.	The equation $e^{\sin x}$ –							
	(a) infinite number ((b) no real root					
140	(c) exactly one real root (d) exactly four real roots If α , β are the roots of the quadratic equation $x^2 - 2(1 - \sin 2\theta)x - 2\cos^2 2\theta = 0$, $(\theta \in R)$ then							
147.		of $(\alpha^2 + \beta^2)$ is equal to		105 20 = 0, (0 e K) tileli				
	(a) -4	(b) 8	(c) 0	(d) 2				
150			1505	, π]; then the number of				
100.	integers in the range			, MJ, aren are maniber of				
	(a) 0	(b) 1	(c) 2	(d) 3				
151.		$tion ax^2 + bx + c = 0 ha$	as two roots α and β such	ch that $\alpha < -3$ and $\beta > 2$.				
	Which of the following	ig is always true ?						
	(a) $a(a+ b +c)>0$		(b) $a(a+ b +c) < 0$					
	(c) $9a - 3b + c > 0$		(d) $(9a-3b+c)(4a+$					
152.				nd γ , δ are the roots of				
	$x^2 + px - r = 0 \text{ then } ($	$(\alpha - \gamma)(\alpha - \delta)$ is equal to						
	(a) $q+r$	(b) $q-r$	(c) $-(q+r)$	(d) - (p+q+r)				
153.	Complete set of soluti							
	(a) $(-\infty, 2)$	(b) $(-\infty, 2+\sqrt{13})$	(c) $(2, \infty)$	(d) None of these				

1			4					3	vers	ISV	Ar							1	4
(d)	10.	(a)	9.	(c)	8.	(b)	7.	(a)	6.	(a)	5.	(b)	4.	(a)	3.	(c)	2.	(d)	1.
(a)	20.	(c)	19.	(b)	18.	(b)	17.	(d)	16.	(d)	15.	(a)	14.	(a)	13.	(c)	12.	(c)	11.
(c)	30.	(d)	29.	(c)	28.	(d)	27.	(a)	26.	(d)	25.	(a)	24.	(c)	23.	(d)	22.	(b)	21.
(c)	40.	(c)	39.	(b)	38.	(b)	37.	(c)	36.	(a)	35.	(d)	34.	(c)	33.	(d)	32.	(d)	31.
(c)	50.	(c)	49.	(a)	48.	(a)	47.	(c)	46.	(b)	45.	(d)	44.	(c)	43.	(b)	42.	(b)	41.
(a)	60.	(c)	59.	(a)	58.	(c)	57.	(b)	56.	(c)	55.	(a)	54.	(a)	53.	(b)	52.	(b)	51.
(d)	70.	(b)	69.	(d)	68.	(a)	67.	(c)	66.	(a)	65.	(c)	64.	(a)	63.	(a)	62.	(c)	61.
(c)	80.	(b)	79.	(a)	78.	(b)	77.	(c)	76.	(c)	75.	(a)	74.	(c)	73.	(c)	72.	(c)	71.
(b)	90.	(d)	89.	(b)	88.	(d)	87.	(b)	86.	(b)	85.	(a)	84.	(a)	83.	(a)	82.	(b)	81.
(b)	100.	(a)	99.	(d)	98.	(b)	97.	(b)	96.	(d)	95.	(b)	94.	(c)	93.	(c)	92.	(b)	91.
(a)	110.	(c)	109.	(d)	108.	(d)	107.	(d)	106.	(c)	105.	(b)	104.	(c)	103.	(b)	102.	(d)	101.
(d)	120.	(b)	119.	(d)	118.	(d)	117.	(c)	116.	(b)	115.	(c)	114.	(c)	113.	(b)	112.	(a)	111.
(b)	130.	(b)	129.	(b)	128.	(c)	127.	(d)	126.	(d)	125.	(b)	124.	(c)	123.	(b)	122.	(d)	121.
(b)	140.	(a)	139.	(c)	138.	(ъ)	137.	(d)	136.	(c)	135.	(b)	134.	(b)	133.	(b)	132.	(c)	131.
(c)	150.	(c)	149.	(b)	148.	(b)	147.	(b)	146.	(a)	145.	(c)	144.	(a)	143.	(d)	142.	(b)	141.
														(a)	153.	(c)	152.	(b)	151.

Exercise-2: One or More than One Answer Is/are Correct

1. Let S is the set of all real x such that $\frac{2x-1}{2x^3+3x^2+x}$ is positive, then S contains:

(a)
$$\left(-\infty, -\frac{3}{2}\right)$$

(b)
$$\left(-\frac{3}{2}, -\frac{1}{2}\right)$$

(c)
$$\left(-\frac{1}{2},0\right)$$

(d)
$$\left(\frac{1}{2}, 2\right)$$

2. If $kx^2 - 4x + 3k + 1 > 0$ for at least one x > 0, then if $k \in S$, then S contains:

(d)
$$\left(-\frac{1}{4}, \infty\right)$$

3. The equation $|x^2 - x - 6| = x + 2$ has:

(a) two positive roots

(b) two real roots

(c) three real roots

(d) four real roots

4. If the roots of the equation $x^2 - ax - b = 0$ $(a, b \in R)$ are both lying between -2 and 2, then:

(a)
$$|a| < 2 - \frac{b}{2}$$

(b)
$$|a| > 2 - \frac{b}{2}$$

(c)
$$|a| < 4$$

(d)
$$|a| > \frac{b}{2} - 2$$

5. Consider the equation in real number x and a real parameter λ , $|x-1|-|x-2|+|x-4|=\lambda$ Then for $\lambda \ge 1$, the number of solutions, the equation can have is/are:

6. If a and b are two distinct non-zero real numbers such that $a - b = \frac{a}{b} = \frac{1}{b} - \frac{1}{a}$, then:

(a)
$$a > 0$$

(b)
$$a < 0$$

(c)
$$b <$$

(d)
$$b > 0$$

7. Let $f(x) = ax^2 + bx + c$, a > 0 and $f(2-x) = f(2+x) \forall x \in R$ and f(x) = 0 has 2 distinct real roots, then which of the following is true?

(a) Atleast one root must be positive

- (b) f(2) < f(0) > f(1)
- (c) Minimum value of f(x) is negative
- (d) Vertex of graph of y = f(x) lies in 3rd quadrat

8. In the above problem, if roots of equation f(x) = 0 are non-real complex, then which of the following is false?

(a)
$$f(x) = \sin \frac{\pi x}{4}$$
 must have 2 solutions

- (b) 4a 2b + c < 0
- (c) If $\log_{f(2)} f(3)$ is not defined, then $f(x) \ge 1 \forall x \in R$
- (d) All a, b, c are positive

9. If exactly two integers lie between the roots of equation $x^2 + ax - 1 = 0$. Then integral value(s) of 'a' is/are:

- (a) -1
- (b) -2
- (c) 1
- (d) 2

10. If the minimum value of the quadratic expression $y = ax^2 + bx + c$ is negative attained at

(c) c > 0

(b) 13a - b + 2c > 0(d) a + c > b, D < 0

Advanced Problems in Mathematics for JEE

(d) D > 0

4	-	4
	n	а
	•	7

negative value of x, then :

(where D is discriminant)

(a) 13a - 5b + 2c > 0

(c) c > 0, D < 0

(b) b > 0

11. The quadratic expression $ax^2 + bx + c > 0 \ \forall \ x \in \mathbb{R}$, then:

(a) a > 0

	(where D is discrimination)	nant)		
12.	The possible positiv	e integral value of 'k' fo	or which $5x^2 - 2kx + 1 <$	0 has exactly one integral
	solution may be div	isible by :		
	(a) 2	(b) 3	(c) 5	(d) 7
13.	If the equation x^2 +	px + q = 0, the coefficient	ent of x was incorrectly w	ritten as 17 instead of 13.
	Then roots were for	and to be -2 and -15 . T	he correct roots are:	
	(a) -1	(b) -3	(c) -5	(d) -10
14.	If $x^2 - 3x + 2 > 0$ ar	ad $x^2 - 3x - 4 \le 0$, then	:	
	(a) $ x \le 2$	(b) $2 \le x \le 4$	(c) $-1 \le x < 1$	(d) $2 < x \le 4$
15.	If $5^x + (2\sqrt{3})^{2x} - 16$	$69 \le 0$ is true for x lying	in the interval:	
	(a) $(-\infty, 2)$	(b) (0, 2]	(c) (2, ∞)	(d) (0, 4)
16.	Let $f(x) = x^2 + \omega$	$c+b$ and $g(x)=x^2+c$	x+d be two quadration	polynomials with real
			which of the following i	
			= 0 must have real roots.	
	(b) Atleast one of e	ther $f(x) = 0$ or $g(x) =$	0 must have real roots.	
	(c) Both $f(x) = 0$ ar	$\operatorname{id} g(x) = 0 \operatorname{must} \operatorname{have} x$	real roots.	
	(d) Both $f(x) = 0$ as	$\operatorname{ind} g(x) = 0 \operatorname{must} \operatorname{have} x$	imaginary roots.	
17.	The expression —	$\frac{1}{2\sqrt{x-1}} + \frac{1}{\sqrt{x-2\sqrt{x-1}}}$	= simplifies to :	
17.	\sqrt{x}	$\sqrt{2\sqrt{x-1}}$ $\sqrt{x-2\sqrt{x-1}}$	1	
	(a) $\frac{2}{3-x}$ if $1 < x < 2$		(b) $\frac{2}{2-x}$ if $1 < x < 2$	
	March Control of the		- ~	
	(c) $\frac{2\sqrt{x-1}}{(x-2)}$ if $x > 2$		(d) $\frac{2\sqrt{x-1}}{x+2}$ if $x > 2$	
	(x-2)		A T Z	
18.	If all values of x whi	ch satisfies the inequal	ity $\log_{(1/3)}(x^2 + 2px + p)$	$^2 + 1) \ge 0$ also satisfy the
	inequality $kx^2 + kx$	$-k^2 \le 0$ for all real val	ues of k, then all possib	the values of p lies in the
	interval:		Pooli	re values of p lies in the
	(a) [-1, 1]	(b) [0, 1]	(c) [0, 2]	(d) [2 m
19.	Which of the following	ng statement(s) is/are	correct?	(d) [-2, 0]
	(a) The number of qu	uadratic equations havi	ng real roots which rem	ain unchanged even after
	squaring their ro	ots is 3.		am unchanged even after

(b)	The number of solutions of the equation $\tan 2\theta + \tan 3\theta = 0$, in the interval [0,	π] is equal
	to 6.	

- (c) For x_1 , x_2 , $x_3 > 0$, the minimum value of $\frac{2x_1}{x_2} + \frac{128x_3^2}{x_2^2} + \frac{x_2^3}{4x_1x_3^2}$ equals 24.
- (d) The locus of the mid-points of chords of the circle $x^2 + y^2 2x 6y 1 = 0$, which are passing through origin is $x^2 + y^2 - x - 3y = 0$.
- **20.** If (a, 0) is a point on a diameter inside the circle $x^2 + y^2 = 4$. Then $x^2 4x a^2 = 0$ has:
 - (a) Exactly one real root in (-1, 0]
- (b) Exactly one real root in [2, 5]
- (c) Distinct roots greater than -1
- (d) Distinct roots less than 5
- **21.** Let $x^2 px + q = 0$ where $p \in R$, $q \in R$, $pq \ne 0$ have the roots α , β such that $\alpha + 2\beta = 0$, then:
 - (a) $2p^2 + q = 0$
- (b) $2q^2 + p = 0$
- (c) q < 0
- (d) q > 0
- **22.** If a, b, c are rational numbers (a > b > c > 0) and quadratic equation $(a + b - 2c)x^2 + (b + c - 2a)x + (c + a - 2b) = 0$ has a root in the interval (-1, 0) then which of the following statement(s) is/are correct?
 - (a) a + c < 2b
 - (b) both roots are rational
 - (c) $ax^2 + 2bx + c = 0$ have both roots negative
 - (d) $cx^2 + 2bx + a = 0$ have both roots negative
- **23.** For the quadratic polynomial $f(x) = 4x^2 8ax + a$, the statements(s) which hold good is/are:
 - (a) There is only one integral 'a' for which f(x) is non-negative $\forall x \in R$
 - (b) For a < 0, the number zero lies between the zeroes of the polynomial
 - (c) f(x) = 0 has two distinct solutions in (0, 1) for $a \in \left(\frac{1}{7}, \frac{4}{7}\right)$
 - (d) The minimum value of f(x) for minimum value of a for which f(x) is non-negative $\forall x \in R \text{ is } 0$
- **24.** Given a, b, c are three distinct real numbers satisfying the inequality a 2b + 4c > 0 and the equation $ax^2 + bx + c = 0$ has no real roots. Then the possible value(s) of $\frac{4a + 2b + c}{a + 3b + 9c}$ is/are:
- (c) 3
- **25.** Let $f(x) = x^2 4x + c \ \forall \ x \in \mathbb{R}$, where c is a real constant, then which of the following is/are
 - (a) f(0) > f(1) > f(2)

- (b) f(2) > f(3) > f(4)
- (c) f(1) < f(4) < f(-1)

- (d) f(0) = f(4) > f(3)
- **26.** If 0 < a < b < c and the roots α , β of the equation $ax^2 + bx + c = 0$ are imaginary, then:
 - (a) $|\alpha| = |\beta|$
- (b) $|\alpha| > 1$
- (c) $|\beta| < 1$
- (d) $|\alpha| = 1$

- **27.** If x satisfies |x-1|+|x-2|+|x-3| > 6, then:
 - (a) $x \in (-\infty, 1)$ (b) $x \in (-\infty, 0)$
- (c) $x \in (4, \infty)$
- (d) $(2,\infty)$

Advanced Problems in Mathematics for JEE

~0	• If both roots of the quadratic equation ax^2	+x+b-a=0 are non 1	real and $b > -1$, then which
	of the following is/are correct?		
20	(a) $a > 0$ (b) $a < b$	(c) $3a > 2 + 4b$	(d) $3a < 2 + 4b$
	If a, b are two numbers such that $a^2 + b^2 =$	$7 \text{ and } a^3 + b^3 = 10, \text{ the}$	en:
	(a) The greatest value of $ a+b =5$	(b) The greatest va	lue of $(a + b)$ is 4
20	(c) The least value of $(a + b)$ is 1	(d) The least value	$a \circ f a+b \text{ is } 1$
30.	or non-negative integral order	red pair(s) (x, y) for (x, y)	which $(xy - 7)^2 = x^2 + y^2$
	holds is greater than or equal to:		
21	(a) 1 (b) 2	(c) 3	(d) 4
31.	If α , β , γ and δ are the roots of the equation.	$x^4 - bx - 3 = 0$; then an	equation whose roots are
	$\frac{\alpha+\beta+\gamma}{\delta^2}$, $\frac{\alpha+\beta+\delta}{\gamma^2}$, $\frac{\alpha+\gamma+\delta}{\beta^2}$ and $\frac{\beta+\gamma+\delta}{\alpha^2}$	is:	
	(a) $3x^4 + bx + 1 = 0$	(b) $3x^4 - bx + 1 = 0$	No.
	(c) $3x^4 + bx^3 - 1 = 0$	(d) $3x^4 - bx^3 - 1 = 0$)
32.	The value of k for which both roots of the ed	quation $4x^2 - 2x + k =$	0 are completely in (-1.1)
	may be equal to :		1 , , , , ,
	(a) -1 (b) 0	(c) 2	(d) -3
33.	If $a, b, c \in R$, then for which of the following $x = ax^2 - 2bx + c(a+0) + b = ax^2 - bx + c($	llowing graphs of th	e quadratic polynomial
	$f = ax = 2bx + c (a \neq 0)$; the product (abc)	is negative?	
	$(a) \xrightarrow{y} x \qquad (b) \xrightarrow{y} x$	↑ ^y	Λy
	(a) $\xrightarrow{\times}$ (b) $\xrightarrow{\times}$	(a) X	
			(d) ×
34.	If the equation $ax^2 + bx + c = 0$; $a, b, c \in R$ following is an always correct?	and $a \neq 0$ has no real	~ · · · · · · · · · · · · · · · · · · ·
	following is/are always correct?	and a + o has no real	roots then which of the
		(b) $(a+b+c)(a-2b)$. 45
	(c) $(a-b+c)(4a-2b+c)>0$	(d) $a(h^2 - 4aa) > 0$	
35.	If α and β are the roots of the equation ax^2 -correct:	+ hr + c = 0 = 1	
	correct :	$0x + c = 0; a, b, c \in R;$	$a \neq 0$ then which is (are)
		1 1 12 -	
	(a) $\alpha^2 + \beta^2 = \frac{b^2 - 2ac}{a^2}$	(b) $\frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{b^2 - 2}{\beta^2}$	ac
	1 1 abc b^3	$\alpha \beta^2 c^2$	
	(c) $\frac{1}{\alpha^3} + \frac{1}{\beta^3} = \frac{abc - b^3}{c^3}$	(d) $\alpha \beta(\alpha + \beta) = \frac{-bc}{\alpha^2}$	
	α β ζ	a^2	
36.	The equation $\cos^2 x - \sin x + \lambda = 0$, $x \in (0, \pi/2)$	has roots then value	(s) of a can be send to
	(a) 0 (b) -1	(c) 1/2	(d) 1
37.	If the equation $ln(x^2 + 5x) - ln(x + a + 3) =$ integral value of a is:	0 has exactly one solu	tion for water water
		, solu	then possible
	(a) -3 (b) -1	(c) 0	(d) 2
			(u) 2

38. The number of non-negative integral ordered pair(s) (x, y) for which $(xy - 7)^2 = x^2 + y^2$ holds is greater than or equal to:

(d) 4

39. If a < 0, then the value of x satisfying $x^2 - 2a|x - a| - 3a^2 = 0$ is/are

(a) $a(1-\sqrt{2})$

(b) $a(1+\sqrt{2})$

(c) $a(-1-\sqrt{6})$

(d) $a(-1+\sqrt{6})$

40. If 0 < a < b < c and the roots α , β of the equation $ax^2 + bx + c = 0$ are imaginary, then

(a) $|\alpha| = |\beta|$

(b) $|\alpha| > 1$

(c) $|\beta| < 1$

(d) $|\alpha| = 1$

41. If x satisfies |x-1|+|x-2|+|x-3| > 6, then

(a) $x \in (-\infty, 1)$

(b) $x \in (-\infty, 0)$

(c) $x \in (4, \infty)$

(d) $(2,\infty)$

42. The value of k for which both roots of the equation $4x^2 - 2x + k = 0$ are completely in (-1, 1), may be equal to:

(a) -1

(b) 0

(d) -3

43. Let α , β , γ , δ are roots of $x^4 - 12x^3 + \lambda x^2 - 54x + 14 = 0$

If $\alpha + \beta = \gamma + \delta$, then

(a) $\lambda = 45$

(c) If $\alpha^2 + \beta^2 < \gamma^2 + \delta^2$ then $\frac{\alpha\beta}{\gamma\delta} = \frac{7}{2}$ (d) If $\alpha^2 + \beta^2 < \gamma^2 + \delta^2 \Rightarrow \frac{\alpha\beta}{\gamma\delta} = \frac{2}{7}$

44. If $\left(\frac{a^3}{a-1}, \frac{a^2-3}{a-1}\right)$; $\left(\frac{b^3}{b-1}, \frac{b^2-3}{b-1}\right)$; $\left(\frac{c^3}{c-1}, \frac{c^2-3}{c-1}\right)$ lie

on L: lx + my + n = 0; where a, b, c are real numbers different from 1; then

(a) $a + b + c = -\frac{m}{1}$

(b) $abc = \frac{m+n}{1}$

(c) $ab + bc + ca = \frac{n}{1}$

(d) abc - (ab + bc + ca) + 3(a + b + c) = 0

Answers

1.	(a, c, d)	2.	(a, b, d)	3.	(a, c)	4.	(a, c, d)	5.	(a, b, c, d)	6.	(b, c)
7.	(a, b, c)	8.	(a, b, d)	9.	(a, c)	10.	(a, b, d)	11.	(a, b, c, d)	12.	(a, c)
13.	(b, d)	14.	(c, d)	15.	(a, b)	16.	(b)	17.	(b, c)	18.	(a, b, c)
19.	(a, b, d)	20.	(a, b, c, d)	21.	(a, c)	22.	(a, b,c, d)	23.	(a, b, d)	24.	(a, c, d)
25.	(a, c, d)	26.	(a, b)	27.	(b, c)	28.	(a, b)	29.	(a, b, d)	30.	(a, b, c, d)
31.	(d)	32.	(a, b)	33.	(a, c, d)	34.	(a, b, d)	35.	(a, b, d)	36.	(a, c)
37.	(b, c, d)	38.	(a, b, c, d)	39.	(a, d)	40.	(a, b)	41.	(b, c)	42.	(a, b)
43.	(a, c)	44.	(a, c, d)								

168

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $f(x) = ax^2 + bx + c$, $a \ne 0$, such that $f(-1-x) = f(-1+x) \forall x \in R$. Also given that f(x) = 0 has no real roots and 4a + b > 0.

- 1. Let $\alpha = 4a 2b + c$, $\beta = 9a + 3b + c$, $\gamma = 9a 3b + c$, then which of the following is correct?
 - (a) $\beta < \alpha < \gamma$
- (b) $\gamma < \alpha < \beta$
- (c) $\alpha < \gamma < \beta$
- (d) $\alpha < \beta < \gamma$

- **2.** Let p = b 4a, q = 2a + b, then pq is:
 - (a) negative
- (b) positive
- (c) 0
- (d) nothing can be said

Paragraph for Question Nos. 3 to 4

If α , β are the roots of equation $(k+1)x^2 - (20k+14)x + 91k + 40 = 0$; $(\alpha < \beta)k > 0$, then answer the following questions.

- **3.** The smaller root (α) lie in the interval :
 - (a) (4, 7)
- (b) (7, 10)
- (c) (10, 13)
- (d) None of these

- **4.** The larger root (β) lie in the interval :
 - (a) (4, 7)
- (b) (7, 10)
- (c) (10, 13)
- (d) None of these

Paragraph for Question Nos. 5 to 7

Let $f(x) = x^2 + bx + c \ \forall x \in \mathbb{R}$, $(b, c \in \mathbb{R})$ attains its least value at x = -1 and the graph of f(x)cuts y-axis at y = 2.

- **5.** The least value of $f(x) \forall x \in R$ is :
 - (a) -1
- (b) 0
- (c) 1
- (d) 3/2

- **6.** The value of f(-2) + f(0) + f(1) =
 - (a) 3
- (b) 5
- (c) 7
- (d) 9
- 7. If f(x) = a has two distinct real roots, then complete set of values of a is:
 - (a) (1, ∞)
- (b) (-2, -1)
- (c) (0, 1)
- (d) (1, 2)

Paragraph for Question Nos. 8 to 9

Consider the equation $\log_2^2 x - 4\log_2 x - m^2 - 2m - 13 = 0$, $m \in \mathbb{R}$. Let the real roots of the equation be x_1 , x_2 such that $x_1 < x_2$.

- **8.** The set of all values of m for which the equation has real roots is:
 - (a) $(-\infty, 0)$
- (b) $(0, \infty)$
- (c) [1, ∞)
- (d) $(-\infty, \infty)$

Quadratic Equations

169

9. The sum of maximum value of x_1 and minimum value of x_2 is:

(a)
$$\frac{513}{8}$$

(b)
$$\frac{513}{4}$$

(c)
$$\frac{1025}{8}$$

(d)
$$\frac{257}{4}$$

Paragraph for Question Nos. 10 to 11

The equation $x^4 - 2x^3 - 3x^2 + 4x - 1 = 0$ has four distinct real roots x_1 , x_2 , x_3 , x_4 such that $x_1 < x_2 < x_3 < x_4$ and product of two roots is unity, then:

10. $x_1x_2 + x_1x_3 + x_2x_4 + x_3x_4 =$

$$(d) -1$$

11. $x_2^3 + x_4^3 =$

(a)
$$\frac{2+5\sqrt{5}}{8}$$

(c)
$$\frac{27\sqrt{5}+5}{4}$$

Paragraph for Question Nos. 12 to 14

Let f(x) be a polynomial of degree 5 with leading coefficient unity, such that f(1) = 5, f(2) = 4, f(3) = 3, f(4) = 2 and f(5) = 1, then:

12. f(6) is equal to :

13. Sum of the roots of f(x) is equal to :

14. Product of the roots of f(x) is equal to :

(b)
$$-120$$

$$(d) -114$$

Paragraph for Question Nos. 15 to 16

Consider the cubic equation in x, $x^3 - x^2 + (x - x^2) \sin \theta + (x - x^2) \cos \theta + (x - 1) \sin \theta \cos \theta = 0$ whose roots are α , β , γ .

15. The value of $\left(\frac{\alpha}{2}\right)^2 + \left(\frac{\beta}{2}\right)^2 + \left(\frac{\gamma}{2}\right)^2 =$

(b)
$$\frac{1}{2}$$

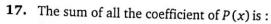
(d)
$$\frac{1}{2}(\sin\theta + \cos\theta + \sin\theta\cos\theta)$$

16. Number of values of θ in [0, 2π] for which at least two roots are equal, is :

Paragraph for Question Nos. 17 to 18

Let P(x) be a quadratic polynomial with real coefficients such that for all real x the relation 2(1 + P(x)) = P(x-1) + P(x+1) holds.

If P(0) = 8 and P(2) = 32 then:



(a) 20

(b) 19

(c) 17

(d) 15

18. If the range of P(x) is $[m, \infty)$, then the value of m is:

(a) -12

(b) 15

(c) -17

(d) -5

Paragraph for Question Nos. 19 to 21

Let t be a real number satisfying $2t^3 - 9t^2 + 30 - \lambda = 0$ where $t = x + \frac{1}{x}$ and $\lambda \in R$.

19. If the above cubic has three real and distinct solutions for x then exhaustive set of value of λ be :

(a) $3 < \lambda < 10$

(b) $3 < \lambda < 30$

(c) $\lambda = 10$

(d) None of these

20. If the cubic has exactly two real and distinct solutions for x then exhaustive set of values of λ be :

(a) $\lambda \in (-\infty, 3) \cup (30, \infty)$

(b) $\lambda \in (-\infty, -22) \cup (10, \infty) \cup \{3\}$

(c) $\lambda \in \{3, 30\}$

(d) None of these

21. If the cubic has four real and distinct solutions for x then exhaustive set of values of λ be :

(a) $\lambda \in (3, 10)$

(b) $\lambda \in \{3, 10\}$

(c) $\lambda \in (-\infty, -22) \cup (10, \infty)$

(d) None of these

Paragraph for Question Nos. 22 to 23

Consider a quadratic expression $f(x) = tx^2 - (2t - 1)x + (5t - 1)$

22. If f(x) can take both positive and negative values then t must lie in the interval

(a) $\left(\frac{-1}{4}, \frac{1}{4}\right)$

(b) $\left(-\infty, \frac{-1}{4}\right) \cup \left(\frac{1}{4}, \infty\right)$ (c) $\left(\frac{-1}{4}, \frac{1}{4}\right) - \{0\}$

(d) (-4,4

23. If f(x) is non-negative $\forall x \ge 0$ then t lies in the interval

(a) $\left[\frac{1}{5}, \frac{1}{4}\right]$

(b) $\left[\frac{1}{4}, \infty\right)$

(c) $\left| \frac{-1}{4}, \frac{1}{4} \right|$

(d) $\left[\frac{1}{5},\infty\right]$

Answers

	(c)		(a)					5.	(c)	6.	(d)	7.	(a)	8.	(d)	9.	(d)	10.	(b)
11.	(d)	12.	(a)	13.	(a)	14.	(c)	15.	(ъ)	16.	(d)	17.	(ъ)	18.	(c)	19.	(c)	20.	(b)
21.	(a)	22.	(c)	23.	(d)														

Quadratic Equations

171

Exercise-4: Matching Type Problems

1.

(A)	The least positive integer x, for which $\frac{2x-1}{2x^3+3x^2+x}$ is	(P)	4/3
(B)	positive, is equal to If the quadratic equation $3x^{2} + 2(a^{2} + 1)x + (a^{2} - 3a + 2) = 0$	(Q)	1
(C)	possess roots of opposite sign then a can be equal to The roots of the equation $ \sqrt{x+3-4\sqrt{x-1}} + \sqrt{x+8-6\sqrt{x-1}} = 1 $ can be equal to	(R)	6
(D)	If the roots of the equation $x^4 - 8x^3 + bx^2 - cx + 16 = 0$ are all real and positive then $2(c-b)$ is equal to	(S)	16
		(T)	10

2. Given the inequality $ax + k^2 > 0$. The complete set of values of 'a' so that

(A)	The inequality is valid for all values of x and k is	(P)	R
(B)	There exists a value of x such that the inequality is valid for any value of k is	(Q)	ф
(C)	There exists a value of k such that the inequality is valid for all values of x is	(R)	{0}
(D)	There exists values of x and k for which inequality is valid is	(S)	R -{0}
		(T)	{1}

3.

(A)	The real root(s) of the equation $x^4 - 8x^2 - 9 = 0$ are	(P)	No real roots
(B)	The real root(s) of the equation $x^{2/3} + x^{1/3} - 2 = 0$ (are	(Q)	-3,3
(C)	The real root(s) of the equation $\sqrt{3x+1}+1=\sqrt{x}$ (are	(R)	-8,1

172

Advanced Problems in Mathematics for JEE

			of	the	equation	(S)	0, 2
$9^{x} - 1$	$10(3^x) +$	9 = 0 are					

4.

(A)	If a, b are the roots of equation $x^2 + ax + b = 0$ $(a, b \in R)$, then the number of ordered pairs (a, b) is equal to	1	1
(B)	If $P = \csc\frac{\pi}{8} + \csc\frac{2\pi}{8} + \csc\frac{3\pi}{8} + \csc\frac{13\pi}{8} + \csc\frac{14\pi}{8} + \csc\frac{15\pi}{8}$ and $Q = 8\sin\frac{\pi}{18}\sin\frac{5\pi}{18}$ $\sin\frac{7\pi}{18}$, then $P + Q$ is equal to	(Q)	2
(C)	Let $a_1, a_2, a_3 \dots$ be positive terms of a G.P. and $a_4, 1, 2, a_{10}$ are the consecutive terms of another G.P. If $\prod_{i=2}^{12} a_i = 4^{\frac{m}{n}}$ where m and n are coprime, then $(m+n)$ equals		3
(D)	For $x, y \in R$, if $x^2 - 2xy + 2y^2 - 6y + 9 = 0$, then the value of $5x - 4y$ is equal to	(S)	15

Answers

1.
$$A \rightarrow Q$$
; $B \rightarrow P$; $C \rightarrow R$; $D \rightarrow S$
2. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow R$; $D \rightarrow P$

3.
$$A \rightarrow Q$$
; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$

4.
$$A \rightarrow Q$$
; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow R$

Exercise-5: Subjective Type Problems

- 1. Let $f(x) = ax^2 + bx + c$ where a, b, c are integers. If $\sin \frac{\pi}{7} \cdot \sin \frac{3\pi}{7} + \sin \frac{5\pi}{7} \cdot \sin \frac{5\pi}{7} \cdot \sin \frac{\pi}{7} = f\left(\cos \frac{\pi}{7}\right)$, then find the value of f(2):
- **2.** Let a, b, c, d be distinct integers such that the equation (x-a)(x-b)(x-c)(x-d)-9=0 has an integer root 'r', then the value of a+b+c+d-4r is equal to:
- 3. Consider the equation $(x^2 + x + 1)^2 (m 3)(x^2 + x + 1) + m = 0$, where m is a real parameter. The number of positive integral values of m for which equation has two distinct real roots, is:
- **4.** The number of positive integral values of m, $m \le 16$ for which the equation given in the above questions has 4 distinct real root is:
- **5.** If the equation $(m^2 12)x^4 8x^2 4 = 0$ has no real roots, then the largest value of m is $p\sqrt{q}$ where p, q are coprime natural numbers, then p + q = 0
- **6.** The least positive integral value of 'x' satisfying $(e^x 2) \left(\sin \left(x + \frac{\pi}{4} \right) \right) (x \log_e 2) \left(\sin x \cos x \right) < 0 \text{ is :}$
- 7. The integral values of x for which $x^2 + 17x + 71$ is perfect square of a rational number are a and b, then |a b| =
- **8.** Let $P(x) = x^6 x^5 x^3 x^2 x$ and α , β , γ , δ are the roots of the equation $x^4 x^3 x^2 1 = 0$, then $P(\alpha) + P(\beta) + P(\gamma) + P(\delta) =$
- **9.** The number of real values of 'a' for which the largest value of the function $f(x) = x^2 + ax + 2$ in the interval [-2, 4] is 6 will be:
- **10.** The number of all values of n, (where n is a whole number) for which the equation $\frac{x-8}{n-10} = \frac{n}{x}$ has no solution.
- 11. The number of negative integral values of m for which the expression $x^2 + 2(m-1)x + m + 5$ is positive $\forall x > 1$ is:
- 12. If the expression $ax^4 + bx^3 x^2 + 2x + 3$ has the remainder 4x + 3 when divided by $x^2 + x 2$, then a + 4b = ...
- 13. Find the smallest value of k for which both the roots of equation $x^2 8kx + 16(k^2 k + 1) = 0$ are real, distinct and have values at least 4.
- **14.** If $x^2 3x + 2$ is a factor of $x^4 px^2 + q = 0$, then p + q = 0
- **15.** The sum of all real values of k for which the expression $x^2 + 2xy + ky^2 + 2x + k = 0$ can be resolved into linear factors is:
- **16.** The curve $y = (a+1)x^2 + 2$ meets the curve y = ax + 3, $a \ne -1$ in exactly one point, then $a^2 =$

- 17. Find the number of integral values of 'a' for which the range of function $f(x) = \frac{x^2 ax + 1}{x^2 3x + 2}$ is
- **18.** When x^{100} is divided by $x^2 3x + 2$, the remainder is $(2^{k+1} 1)x 2(2^k 1)$, then k = 1
- 19. Let P(x) be a polynomial equation of least possible degree, with rational coefficients, having $\sqrt[3]{7} + \sqrt[3]{49}$ as one of its roots. Then the product of all the roots of P(x) = 0 is:
- **20.** The range of values k for which the equation $2\cos^4 x \sin^4 x + k = 0$ has at least one solution is $[\lambda, \mu]$. Find the value of $(9\mu + \delta)$.
- **21.** Let P(x) be a polynomial with real coefficient and $P(x) P'(x) = x^2 + 2x + 1$. Find P(1).
- **22.** Find the smallest positive integral value of a for which the greater root, of the equation $x^2 (a^2 + a + 1)x + a(a^2 + 1) = 0$ lies between the roots of the equation $x^2 a^2x 2(a^2 2) = 0$
- **23.** If the equation $x^4 + kx^2 + k = 0$ has exactly two distinct real roots, then the smallest integral value of |k| is:
- **24.** Let a, b, c, d be the roots of $x^4 x^3 x^2 1 = 0$. Also consider $P(x) = x^6 x^5 x^3 x^2 x$, then the value of P(a) + P(b) + P(c) + P(d) is equal to :
- **25.** The number of integral values of a, $a \in [-5, 5]$ for which the equation $x^2 + 2(a-1)$ x + a + 5 = 0 has one root smaller than 1 and the other root greater than 3 is :
- **26.** The number of non-negative integral values of n, $n \le 10$ so that a root of the equation $n^2 \sin^2 x 2 \sin x (2n+1) = 0$ lies in interval $\left[0, \frac{\pi}{2}\right]$ is:
- **27.** Let $f(x) = ax^2 + bx + c$, where a, b, c are integers and a > 1. If f(x) takes the value p, a prime for two distinct integer values of x, then the number of integer values of x for which f(x) takes the value 2p is :
- **28.** If x and y are real numbers connected by the equation $9x^2 + 2xy + y^2 92x 20y + 244 = 0$, then the sum of maximum value of x and the minimum value of y is:
- **29.** Consider two numbers *a*, *b*, sum of which is 3 and the sum of their cubes is 7. Then sum of all possible distinct values of *a* is :
- **30.** If $y^2(y^2-6) + x^2 8x + 24 = 0$ and the minimum value of $x^2 + y^4$ is m and maximum value is M; then find the value of M 2m.
- 31. Consider the equation $x^3 ax^2 + bx c = 0$, where a, b, c are rational number, $a \ne 1$. It is given that x_1, x_2 and x_1x_2 are the real roots of the equation. If (b+c) = 2(a+1), then $x_1x_2\left(\frac{a+1}{b+c}\right) =$
- **32.** Let α satisfy the equation $x^3 + 3x^2 + 4x + 5 = 0$ and β satisfy the equation $x^3 3x^2 + 4x 5 = 0$, $\alpha, \beta \in R$, then $\alpha + \beta =$

33. Let x, y and z are positive reals and $x^2 + xy + y^2 = 2$; $y^2 + yz + z^2 = 1$ and $z^2 + zx + x^2 = 3$. If the value of xy + yz + zx can be expressed as $\sqrt{\frac{p}{q}}$ where p and q are relatively prime positive integer find the value of p - q:

- **34.** The number of ordered pairs (a, b), where a, b are integers satisfying the inequality $\min(x^2 + (a-b)x + (1-a-b)) > \max(-x^2 + (a+b)x (1+a+b)) \forall x \in R$, is:
- **35.** The real value of x satisfying $\sqrt[3]{20x + \sqrt[3]{20x + 13}} = 13$ can be expressed as $\frac{a}{b}$ where a and b are relatively prime positive integers. Find the value of b?
- **36.** If the range of the values of a for which the roots of the equation $x^2 2x a^2 + 1 = 0$ lie between the roots of the equation $x^2 2(a+1)x + a(a-1) = 0$ is (p,q), then find the value of $\left(q \frac{1}{p}\right)$.
- **37.** Find the number of positive integers satisfying the inequality $x^2 10x + 16 < 0$.
- **38.** If $\sin \theta$ and $\cos \theta$ are the roots of the quadratic equation $ax^2 + bx + c = 0$ ($ac \ne 0$). Then find the value of $\frac{b^2 a^2}{ac}$.
- **39.** Let the inequality $\sin^2 x + a \cos x + a^2 \ge 1 + \cos x$ is satisfied $\forall x \in R$, for $a \in (-\infty, k_1] \cup [k_2, \infty)$, then $|k_1| + |k_2| =$
- **40.** α and β are roots of the equation $2x^2 35x + 2 = 0$. Find the value of $\sqrt{(2\alpha 35)^3 (2\beta 35)^3}$
- **41.** The sum of all integral values of 'a' for which the equation $2x^2 (1 + 2a)x + 1 + a = 0$ has a integral root.
- **42.** Let f(x) be a polynomial of degree 8 such that $F(r) = \frac{1}{r}$, $r = 1, 2, 3, \dots, 8, 9$, then $\frac{1}{F(10)} = \frac{1}{r}$
- **43.** Let α , β are two real roots of equation $x^2 + px + q = 0$, $p, q \in R$, $q \ne 0$. If the quadratic equation g(x) = 0 has two roots $\alpha + \frac{1}{\alpha}$, $\beta + \frac{1}{\beta}$ such that sum of its roots is equal to product of roots, then then number of integral values q can attain is:
- **44.** If $\cos A$, $\cos B$ and $\cos C$ are the roots of cubic $x^3 + ax^2 + bx + c = 0$, where A, B, C are the angles of a triangle then find the value of $a^2 2b 2c$.
- **45.** Find the number of positive integral values of k for which $kx^2 + (k-3)x + 1 < 0$ for at least one positive x.

1						7.8	Answers											
10.	0	9.	6	8.	3	7.	3	6.	5	5.	7	4.	1	3.	0	2.	9	1.
20.	56	19.	99	18.	0	17.	4	16.	2	15.	9	14.	2	13.	9	12.	0	11.
30.	3	29.	7	28.	0	27.	8	26.	4	25.	6	24.	1	23.	3	22.	2	21.
40. 8	3	39.	2	38.	5	37.	5	36.	5	35.	9	34.	5	33.	0	32.	1	31.
									0	45.	1	44.	3	43.	5	42.	1	41.

Chapter 9 - Sequence and Series

(c) H.P.

SEQUENCE AND SERIES

Exercise-1: Single Choice Problems

1. If <i>a</i> , <i>b</i> , <i>c</i> are pos	sitive numbers and $a + b$	+ c = 1, then the maxim	a a a a a a a a a a	-b)(1-c)
is:				
(a) 1	(b) $\frac{2}{3}$	(c) $\frac{8}{27}$	(d) $\frac{4}{9}$	

2. If xyz = (1-x)(1-y)(1-z) where $0 \le x, y, z \le 1$, then the minimum value of x(1-z) + y(1-x) + z(1-y) is:

3. If $\sec(\alpha - 2\beta)$, $\sec \alpha$, $\sec(\alpha + 2\beta)$ are in arithmetical progression then $\cos^2 \alpha = \lambda \cos^2 \beta$ $(\beta \neq n\pi, n \in I)$ the value of λ is :

(a) 1 (b) 2 (c) 3 (d) $\frac{1}{2}$

4. Let a, b, c, d, e are non-zero and distinct positive real numbers. If a, b, c are in A.P.; b, c, d are in G.P. and c, d, e are in H.P., then a, c, e are in :

(a) A.P. (b) G.P.

5. If $(m+1)^{th}$, $(n+1)^{th}$, and $(r+1)^{th}$ terms of a non-constant A.P. are in G.P. and m, n, r are in H.P., then the ratio of first term of the A.P to its common difference is:

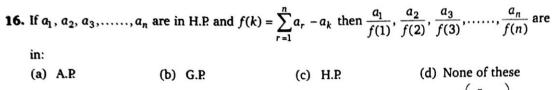
(d) Nothing can be said

(a) $-\frac{n}{2}$ (b) -n (c) -2n (d) +n

6. If the equation $x^4 - 4x^3 + ax^2 + bx + 1 = 0$ has four positive roots, then the value of (a + b) is:

(a) -4 (b) 2

(c) 6 (d) can not be determined



17. If α , β be roots of the equation $375x^2 - 25x - 2 = 0$ and $s_n = \alpha^n + \beta^n$, then $\lim_{n \to \infty} \left(\sum_{r=1}^n S_r \right) = \dots$

18. If a_i , i = 1, 2, 3, 4 be four real members of the same sign, then the minimum value of $\sum \frac{a_i}{a_j}$, $i, j \in \{1, 2, 3, 4\}$, $i \neq j$ is:

(a) 6 (b) 8 (c) 12 (d) 24 19. Given that x, y, z are positive reals such that xyz = 32. The minimum value of $x^2 + 4xy + 4y^2 + 2z^2$ is equal to:

(a) 64 (b) 256 (c) 96 (d) 216

20. In an A.P., five times the fifth term is equal to eight times the eighth term. Then the sum of the

first twenty five terms is equal to:
(a) 25 (b) $\frac{25}{2}$ (c) -25 (d) 0

21. Let α , β be two distinct values of x lying in $[0, \pi]$ for which $\sqrt{5} \sin x$, $10 \sin x$, $10(4 \sin^2 x + 1)$ are 3 consecutive terms of a G.P. Then minimum value of $|\alpha - \beta| =$

(a) $\frac{\pi}{10}$ (b) $\frac{\pi}{5}$ (c) $\frac{2\pi}{5}$ (d) $\frac{3\pi}{5}$

22. In an infinite G.P., the sum of first three terms is 70. If the extreme terms are multiplied by 4 and the middle term is multiplied by 5, the resulting terms form an A.P. then the sum to infinite terms of G.P. is:

(a) 120 (b) 40 (c) 160 (d) 80

23. The value of the sum $\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} \frac{k}{2^{n+k}}$ is equal to :

(a) 5 (b) 4 (c) 3 (d) 2

24. Let p, q, r are positive real numbers, such that $27pqr \ge (p+q+r)^3$ and 3p+4q+5r=12, then $p^3+q^4+r^5=12$

(a) 3 (b) 6 (c) 2 (d) 4

25. Find the sum of the infinite series $\frac{1}{9} + \frac{1}{18} + \frac{1}{30} + \frac{1}{45} + \frac{1}{63} + \dots$

(a) $\frac{1}{3}$ (b) $\frac{1}{4}$ (c) $\frac{1}{5}$ (d) $\frac{2}{3}$

AND THE RESIDENCE OF THE PROPERTY OF THE PROPE	

Sequence and Series

(a) 1000π

(a) 193

(b) 5050π

(b) 194

36.	If $x + y = a$ and :	$x^2 + y^2 = b$, then the value	1e of $(x^3 + y^3)$, is:	
	(a) ab	(b) $a^2 + b$	(c) $a + b^2$	$(d) \ \frac{3ab-a^3}{2}$
37.		, S_n are the sum of -1) and whose common		eries whose first terms are $\frac{2}{2n+1}$ respectively, then
	$\left\{ \frac{1}{S_1 S_2 S_3} + \frac{1}{S_2 S_3} \right\}$	$\frac{1}{S_4} + \frac{1}{S_3 S_4 S_5} + \dots \text{upto}$	infinite terms =	
	(a) $\frac{1}{15}$	(b) $\frac{1}{60}$	(c) $\frac{1}{12}$	(d) $\frac{1}{3}$
38.	Sequence $\{t_n\}$ of	f positive terms is a G.P. If	ft_6 , 2, 5, t_{14} form anot	her G.P. in that order,
	then the product	$t t_1 t_2 t_3 \dots t_{18} t_{19}$ is equa	l to :	
	(a) 10 ⁹	(b) 10 ¹⁰	(c) $10^{17/2}$	(d) $10^{19/2}$
39.	The minimum va	alue of $\frac{(A^2 + A + 1)(B^2 + A)}{(A^2 + A)}$	$(B+1)(C^2+C+1)(D^2)$	$(\frac{D^2 + D + 1)}{2}$ where A, B, C, D > 0
			ABCD	
	is:			
	(a) $\frac{1}{3^4}$	(b) $\frac{1}{2^4}$	(c) 2 ⁴	(d) 3 ⁴
40.	If $\sum_{1}^{20} r^3 = a$, $\sum_{1}^{20} r^3 = a$	$r^2 = b$ then sum of produc	ets of 1, 2, 3, 4 20	taking two at a time is :
	(a) $\frac{a-b}{2}$	(b) $\frac{a^2-b^2}{2}$	(c) $a-b$	(d) $a^2 - b^2$
41.	The sum of the difference is:	first 2n terms of an A.P. is	x and the sum of the	next n terms is y , its common
	(a) $\frac{x-2y}{3n^2}$	(b) $\frac{2y - x}{3n^2}$	(c) $\frac{x-2y}{3n}$	(d) $\frac{2y-x}{3n}$
42.	The number of r	non-negative integers 'n's	satisfying $n^2 = p + q$ ar	$nd n^3 = p^2 + q^2 \text{ where } p \text{ and } q$
	are integers.			
	(a) 2	(b) 3	(c) 4	(d) Infinite
43.	Concentric circle	es of radii 1, 2, 3 100	cms are drawn. The i	nterior of the smallest circle is
				green and red, so that no two
		are or the same colour.	The total area of the gr	een regions in sq. cm is equals
	to:			

(c) 4950π

(c) 195

44. If $\log_2 4$, $\log_{\sqrt{2}} 8$ and $\log_3 9^{k-1}$ are consecutive terms of a geometric sequence, then the

number of integers that satisfy the system of inequalities $x^2 - x > 6$ and $|x| < k^2$ is:

(d) 5151π

45. Let T_r be the r^{th} term of an A.P. whose first term is $-\frac{1}{2}$ and common difference is 1, then

$$\sum_{r=1}^{n} \sqrt{1 + T_r T_{r+1} T_{r+2} T_{r+3}} =$$

(b) $\frac{n(n+1)(2n+1)}{6} - \frac{5n}{4} + \frac{1}{4}$ (d) $\frac{n(n+1)(2n+1)}{12} - \frac{5n}{8} + 1$

(a) $\frac{n(n+1)(2n+1)}{6} - \frac{5n}{4}$
(c) $\frac{n(n+1)(2n+1)}{6} - \frac{5n}{4} + \frac{1}{2}$

46. If $\sum_{r=1}^{n} T_r = \frac{n(n+1)(n+2)}{3}$, then $\lim_{n\to\infty} \sum_{r=1}^{n} \frac{2008}{T_r} = \frac{n(n+1)(n+2)}{n+2}$

(d) 8032

(a) 2008 (b) 3012 (c) 4016 **47.** The sum of the infinite series, $1^2 - \frac{2^2}{5} + \frac{3^2}{5^2} - \frac{4^2}{5^3} + \frac{5^2}{5^4} - \frac{6^2}{5^5} + \dots$ is:

(a) $\frac{1}{2}$

(b) $\frac{25}{24}$ (c) $\frac{25}{54}$ (d) $\frac{125}{252}$

48. The absolute term in $P(x) = \sum_{r=1}^{n} \left(x - \frac{1}{r}\right) \left(x - \frac{1}{r+1}\right) \left(x - \frac{1}{r+2}\right)$ as *n* approaches to infinity is:

(c) $\frac{1}{4}$ (d) $\frac{-1}{4}$

49. Let a, b, c are positive real numbers such that $p=a^2b+ab^2-a^2c-ac^2$; $q=b^2c+bc^2-a^2b-ab^2$ and $r = ac^2 + a^2c - cb^2 - bc^2$ and the quadratic equation $px^2 + qx + r = 0$ has equal roots; then a, b, c are in:

50. If T_k denotes the k^{th} term of an H.P. from the beginning and $\frac{T_2}{T_6} = 9$, then $\frac{T_{10}}{T_4}$ equals:

(a) $\frac{17}{5}$

(b) $\frac{5}{17}$

51. Number of terms common to the two sequences 17, 21, 25,, 417 and 16, 21, 26,, 466

(a) 19

52. The sum of the series $1 + \frac{2}{3} + \frac{1}{3^2} + \frac{2}{3^3} + \frac{1}{3^4} + \frac{2}{3^5} + \frac{1}{3^6} + \frac{2}{3^7} + \dots$ upto infinite terms is equal

to:

(a) $\frac{15}{8}$

(b) $\frac{8}{15}$ (c) $\frac{27}{8}$

(d) $\frac{21}{8}$

53. The coefficient of x^8 in the polynomial (x-1)(x-2)(x-3)....(x-10) is:

(a) 2640

(b) 1320

(c) 1370

(d) 2740

Sequence	and	Serie	
----------	-----	-------	--

4	52	17
-	o	
-	_	-

sequ	ence e	ana series					103
54.	Let o	$\alpha = \lim_{n \to \infty} \frac{(1^3 - 1^2) + 1}{n}$	- (2 ³ -	$(-2^2) + + (n^3 - n^2)$) , tl	nen α is equal to :	
	(a)	$\frac{1}{3}$	(b)	1 4	(c)	$\frac{1}{2}$	(d) non-existent
55.	If 16	$x^4 - 32x^3 + ax^2 +$	- bx +	$1=0$, $a,b\in R$ has p	oosit	ive real roots only	then $a-b$ is equal to:
	(a)	-32	(b) 3		(c)		(d) -49
56.	If AE	C is a triangle an	d tan	$\frac{A}{2}$, $\tan \frac{B}{2}$, $\tan \frac{C}{2}$ are	e in l	H.P., then the mini	mum value of $\cot \frac{B}{2} =$
	(a)	$\sqrt{3}$	(b)	1	(c)	$\frac{1}{\sqrt{2}}$	(d) $\frac{1}{\sqrt{3}}$
57.	Ifα	and β are the roots	of the	quadratic equation	4 <i>x</i> ²	+2x-1=0 then t	he value of $\sum_{r=1}^{\infty} (\alpha^r + \beta^r)$
	is:						
	(a)		(b) :		(c)		(d) 0
58.	The	sum of the series 2	$2^2 + 2$	$(4)^2 + 3(6)^2 + \dots$. up	to 10 terms is equa	al to:
		11300				12300	(d) 11200
59.			real n	numbers such that a	+ b	= 6, then the minir	num value of $\left(\frac{4}{a} + \frac{1}{b}\right)$ is
	equa	•		1			2
	(a)	3	(b) -	3	(c)	1	(d) $\frac{3}{2}$
60.	The	first term of	an ii	nfinite G.P. is th	ie v	value of x sa	tisfying the equation
	log ₄	$(4^x - 15) + x - 2 =$	= 0 and	d the common ratio	is c	$\cos\left(\frac{2011\pi}{3}\right)$ The s	um of G.P. is :
	(a)	1	(b) -	$\frac{4}{3}$	(c)	4	(d) 2
61.	Let a			ers, then the minim	um	value of $\frac{a^4 + b^4 + abc}{abc}$	$\frac{c^2}{}$ is:
	(a)	7	(b) 2		(c)	$\sqrt{2}$	(d) $2\sqrt{2}$
62.	If xy	= 1; then minim	um va	lue of $x^2 + y^2$ is:			
	(a)	1	(b) 2	2	(c)	$\sqrt{2}$	(d) 4
63.	Find	the value of $\frac{2}{1^3}$ +	$\frac{6}{1^3 + 2}$	$\frac{12}{2^3} + \frac{12}{1^3 + 2^3 + 3^3}$	$+\frac{1}{1^3}$	$\frac{20}{+2^3+3^3+4^3}$ +	(d) 4 upto 60 terms :
	(a)	2	(b) =	<u>1</u> 2	(c)	4	(d) $\frac{1}{4}$

184

64. Evaluate: $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)(n+3)....(n+k)}$

- (a) $\frac{1}{(k-1)(k-1)!}$ (b) $\frac{1}{k \cdot k!}$

- 65. Consider two positive numbers a and b. If arithmetic mean of a and b exceeds their geometric mean by 3/2 and geometric mean of a and b exceeds their harmonic mean by 6/5 then the value of $a^2 + b^2$ will be:

www.jeebooks.in

- (a) 150
- (b) 153

- **66.** Sum of first 10 terms of the series, $S = \frac{7}{2^2 \cdot 5^2} + \frac{13}{5^2 \cdot 8^2} + \frac{19}{8^2 \cdot 11^2} + \dots$ is:
- (b) $\frac{88}{1024}$ (c) $\frac{264}{1024}$ (d) $\frac{85}{1024}$

67.
$$\sum_{r=1}^{10} \frac{r}{1-3r^2+r^4} =$$

- (a) $-\frac{50}{109}$ (b) $-\frac{54}{109}$ (c) $-\frac{55}{111}$ (d) $-\frac{55}{109}$

- **68.** Let r^{th} term t_r of a series is given by $t_r = \frac{r}{1+r^2+r^4}$. Then $\lim_{n\to\infty}\sum_{r=1}^n t_r$ is equal to :
 - (a) $\frac{1}{2}$

- **69.** The sum of the series $1 + \frac{4}{5} + \frac{7}{5^2} + \frac{10}{5^3} + \dots$ to infinite terms, is:
 - (a) $\frac{31}{12}$
- (b) $\frac{41}{16}$
- (c) $\frac{45}{16}$
- 70. The third term of a G.P. is 2. Then the product of the first five terms, is:

- (d) none of these
- **71.** If $x_1, x_2, x_3, \ldots, x_{2n}$ are in A.P., then $\sum_{r=1}^{2n} (-1)^{r+1} x_r^2$ is equal to:
 - (a) $\frac{n}{(2n-1)}(x_1^2-x_{2n}^2)$

(b) $\frac{2n}{(2n-1)}(x_1^2-x_{2n}^2)$

(c) $\frac{n}{n-1}(x_1^2-x_{2n}^2)$

- (d) $\frac{n}{2n+1}(x_1^2-x_{2n}^2)$
- 72. Let two numbers have arithmatic mean 9 and geometric mean 4. Then these numbers are roots of the equation:
 - (a) $x^2 + 18x + 16 = 0$

(b) $x^2 - 18x - 16 = 0$

(c) $x^2 + 18x - 16 = 0$

(d) $x^2 - 18x + 16 = 0$

73. If p and q are positive real numbers such that $p^2 + q^2 = 1$, then the maximum value of (p + q) is:

74. A person has to count 4500 currency notes. Let a_n denote the number of notes he counts in the n^{th} minute. If $a_1 = a_2 = \dots = a_{10} = 150$ and $a_{10}, a_{11}, a_{12}, \dots$ are in A.P. with common difference -2, then the time taken by him to count all notes is:

- (a) 34 minutes
- (b) 24 minutes
- (c) 125 minutes
- (d) 35 minutes

75. A non constant arithmatic progression has common difference d and first term is (1 - ad). If the sum of the first 20 terms is 20, then the value of a is equal to:

76. The value of $\sum_{n=3}^{\infty} \frac{1}{n^5 - 5n^3 + 4n} =$

(a) $\frac{1}{120}$ (b) $\frac{1}{96}$ (c) $\frac{1}{24}$ (d) $\frac{1}{144}$ 77. Find the value of $\frac{2}{1^3} + \frac{6}{1^3 + 2^3} + \frac{12}{1^3 + 2^3 + 3^3} + \frac{20}{1^3 + 2^3 + 3^3 + 4^3} + \dots$ up to infinite

- (a) 2

- (d) $\frac{1}{4}$

78. The minimum value of the expression $2^x + 2^{2x+1} + \frac{5}{2^x}$, $x \in R$ is:

- (a) 7
- (b) $(7.2)^{1/7}$
- (c) 8
- (d) $(3.10)^{1/3}$

79. The value of $\sum_{r=1}^{\infty} \frac{(4r+5)5^{-r}}{r(5r+5)}$ is:

- (b) $\frac{2}{5}$
- (c) $\frac{1}{25}$

186

Advanced Problems in Mathematics for JEE

Answers 1. (c) 2. (c) 3. (b) 4. (b) 5. (a) 6. (b) 7. (d) 8. (a) 9. (a) 10. (c) 11. (d) 12. (c) 13. (b) 14. (c) (b) 16. (c) 17. (a) 18. (c) 19. (c) 20. (d) (b) 22. (d) 23. (d) (a) 25. (a) 26. (b) 27. (d) (b) 29. (d) 30. (d) 31. (a) 32. (d) 33. (c) 34. 35. (b) (c) 36. (d) 37. (b) 38. (d) 39. (d) 40. (a) 41. (b) **42.** (b) 43. (b) (a) 45. (c) **46.** (a) 47. (c) 48. (d) 49. (c) **50.** (b) 51. (b) **52.** (a) 53. (b) 54. (b) 55. (b) **56.** (a) 57. (d) 58. (b) 59. (d) 60. (c) **62.** (b) 61. (d) **63.** (c) 64. (c) (d) 66. (d) 67. (d) 68. (a) 69. (d) 70. (c) 74. (a) 75. (b) 76. (b) 78. (a)

Exercise-2: One or More than One Answer is/are Correct

- 1. If the first and $(2n-1)^{th}$ terms of an A.P., G.P. and H.P. with positive terms are equal and their n^{th} terms are a, b and c respectively, then which of the following options must be correct :
 - (a) a+c=2b

(b) $a \ge b \ge c$

(c) $\frac{2ac}{a+c} = b$

- (d) $ac = b^2$
- **2.** Let a, b, c are distinct real numbers such that expression $ax^2 + bx + c$, $bx^2 + cx + a$ and $cx^2 + ax + b$ are always positive then possible value(s) of $\frac{a^2 + b^2 + c^2}{ab + bc + ca}$ may be :
 - (a) 1
- (c) 3

- **3.** If a, b, c are in H.P., where a > c > 0, then :
 - (a) $b > \frac{a+c}{2}$

(b) $\frac{1}{a-b} - \frac{1}{b-c} < 0$

(c) $ac > b^2$

- (d) bc(1-a), ac(1-b), ab(1-c) are in A.P.
- **4.** In an A.P., let T_r denote r^{th} term from beginning, $T_p = \frac{1}{q(p+q)}$, $T_q = \frac{1}{p(p+q)}$, then:
 - (a) $T_1 = \text{common difference}$
- (b) $T_{p+q} = \frac{1}{pq}$

(c) $T_{pq} = \frac{1}{p+q}$

- (d) $T_{p+q} = \frac{1}{n^2 a^2}$
- 5. Which of the following statement(s) is(are) correct?
 - (a) Sum of the reciprocal of all the n harmonic means inserted between a and b is equal to ntimes the harmonic mean between two given numbers a and b.
 - (b) Sum of the cubes of first n natural number is equal to square of the sum of the first n
 - (c) If $a, A_1, A_2, A_3, \ldots, A_{2n}, b$ are in A.P. then $\sum_{i=1}^{2n} A_i = n(a+b)$.
 - (d) If the first term of the geometric progression $g_1, g_2, g_3, \ldots, \infty$ is unity, then the value of the common ratio of the progression such that $(4g_2 + 5g_3)$ is minimum equals $\frac{2}{5}$.
- **6.** If a, b, c are in 3 distinct numbers in H.P., a, b, c > 0, then :
 - (a) $\frac{b+c-a}{a}$, $\frac{c+a-b}{b}$, $\frac{a+b-c}{c}$ are in A.P. (b) $\frac{b+c}{a}$, $\frac{c+a}{b}$, $\frac{a+b}{c}$ are in A.P.

(c) $a^5 + c^5 \ge 2b^5$

(d) $\frac{a-b}{b-c} = \frac{a}{c}$

(c) 20.5

(b) A < B < C

(d) Triangle ABC is right angled

(b) $\cos(x-y) = \frac{\sqrt{3}-\sqrt{2}}{2\sqrt{2}}$

(d) $\sin(x-y) + \sin(y-z) = 0$

(d) -16

12. For $\triangle ABC$, if $81 + 144a^4 + 16b^4 + 9c^4 = 144abc$, (where notations have their usual meaning),

13. Let $x, y, z \in \left(0, \frac{\pi}{2}\right)$ are first three consecutive terms of an arithmetic progression such that

14. If the numbers 16, 20, 16, d form a A.G.P., then d can be equal to.

(b) 11

 $\cos x + \cos y + \cos z = 1$ and $\sin x + \sin y + \sin z = \frac{1}{\sqrt{2}}$, then which of the following is/are

(c) -8

then:

correct?

(a) 3

(a) $\cot y = \sqrt{2}$

(c) $\tan 2y = \frac{2\sqrt{2}}{3}$

(a) a > b > c

(c) Area of $\triangle ABC = \frac{3\sqrt{3}}{6}$

1000.....01 1000.....01 m zeroes 15. Given , then which of the following is true 1000.....01 (n+1) zeroes (m+1)zeroes

- (c) m < n + 1

16. If $S_r = \sqrt{r + \sqrt{r + \sqrt{r + \sqrt{r + \sqrt{\dots \infty}}}}}$, r > 0, then which of the following is/are correct.

- (a) S_2, S_6, S_{12}, S_{20} are in A.P.
- (b) S_4, S_9, S_{16} are irrational
- (c) $(2S_3 1)^2$, $(2S_4 1)^2$, $(2S_5 1)^2$ are in A.P. (d) S_2 , S_{12} , S_{56} are in G.P.
- 17. Consider the A.P. 50, 48, 46, 44, If S_n denotes the sum to n terms of this A.P., then
 - (a) S_n is maximum for n = 25
- (b) the first negative terms is 26th term
- (c) the first negative term is 27th term
- (d) the maximum value of S_n is 650
- **18.** Let S_n be the sum to n terms of the series $\frac{3}{1^2} + \frac{5}{1^2 + 2^2} + \frac{7}{1^2 + 2^2 + 3^2} + \frac{9}{1^2 + 2^2 + 3^2 + 4^2}$ +..... then
 - (a) $S_5 = 5$
- (b) $S_{50} = \frac{100}{17}$ (c) $S_{1001} = \frac{1001}{97}$ (d) $S_{\infty} = 6$

19. For $\triangle ABC$, if $81 + 144a^4 + 16b^4 + 9c^4 = 144abc$, (where notations have their usual meaning), then

(a) a > b > c

- (b) A < B < C
- (c) Area of $\triangle ABC = \frac{3\sqrt{3}}{9}$
- (d) Triangle ABC is right angled

1	1				Ansv	ver	3				1
1.	(b, d)	2.	(b, c)	3.	(b, c, d)	4.	(a, b, c)	5.	(b, c)	6.	(a, b, c, d)
7.	(a, b)	8,	(a, b)	9.	(b, c)	10.	(b, d)	11.	(a, d)	12.	(b, c, d)
13.	(a, b)	14.	(b)	15.	(b, c)	16.	(a, b, c, d)	17.	(a, c, d)	18.	(a, b, d)
19.	(b, c, d)										

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

The first four terms of a sequence are given by $T_1 = 0$, $T_2 = 1$, $T_3 = 1$, $T_4 = 2$. The general term is given by $T_n = A\alpha^{n-1} + B\beta^{n-1}$ where A, B, α , β are independent of n and A is positive.

- **1.** The value of $(\alpha^2 + \beta^2 + \alpha\beta)$ is equal to :
 - (a) 1
- (b) 2
- (c) 5
- (d) 4

- **2.** The value of $5(A^2 + B^2)$ is equal to :
 - (a) 2
- (b) 4
- (c) 6
- (d) 8

Paragraph for Question Nos. 3 to 4

There are two sets A and B each of which consists of three numbers in A.P. whose sum is 15. D and d are their respective common differences such that D - d = 1, D > 0. If $\frac{p}{q} = \frac{7}{8}$ where p and q are the product of the numbers in those sets A and B respectively.

- **3.** Sum of the product of the numbers in set A taken two at a time is:
 - (a) 51
- (b) 7
- (c) 74
- (d) 86
- **4.** Sum of the product of the numbers in set B taken two at a time is:
 - (a) 52
- (b) 54
- (c) 64
- (d) 74

Paragraph for Question Nos. 5 to 7

Let x, y, z are positive reals and x + y + z = 60 and x > 3.

- **5.** Maximum value of (x-3)(y+1)(z+5) is :
 - (a) (17) (21) (25)
- (b) (20) (21) (23)
- (c) (21) (21) (21)
- (d) (23) (19) (15)

- **6.** Maximum value of (x-3)(2y+1)(3z+5) is :
 - (a) $\frac{(355)^3}{3^3 \cdot 6^2}$
- (b) $\frac{(355)^3}{3^3 \cdot 6^3}$
- (c) $\frac{(355)^3}{3^2 \cdot 6^3}$
- (d) None of these

- 7. Maximum value of xyz is:
 - (a) 8×10^3
- (b) 27×10^3
- (c) 64×10^3
- (d) 125×10^3

Paragraph for Question Nos. 8 to 10

Two consecutive numbers from n natural numbers 1, 2, 3,..., n are removed. Arithmetic mean of the remaining numbers is $\frac{105}{4}$.

Sequence and Series

191

8. The value of n is:

(a) 48

(b) 50

(c) 52

(d) 49

9. The G.M. of the removed numbers is:

(a) $\sqrt{30}$

(b) $\sqrt{42}$

(c) $\sqrt{56}$

(d) $\sqrt{72}$

10. Let removed numbers are x_1 , x_2 then $x_1 + x_2 + n =$

(a) 61

(b) 63

(c) 65

(d) 69

Paragraph for Question Nos. 11 to 13

The sequence $\{a_n\}$ is defined by formula $a_0 = 4$ and $a_{n+1} = a_n^2 - 2a_n + 2$ for $n \ge 0$. Let the sequence $\{b_n\}$ is defined by formula $b_0 = \frac{1}{2}$ and $b_n = \frac{2a_0a_1a_2...a_{n-1}}{a_n} \ \forall \ n \ge 1$.

11. The value of a_{10} is equal to :

(a) $1 + 2^{1024}$

(b) 4¹⁰²⁴

(c) $1+3^{1024}$

(d) 6^{1024}

12. The value of *n* for which $b_n = \frac{3280}{3281}$ is :

(a) 2

(b) 3

(c) 4

(d) 5

13. The sequence $\{b_n\}$ satisfies the recurrence formula :

(a) $b_{n+1} = \frac{2b_n}{1-b_n^2}$

(b) $b_{n+1} = \frac{2b_n}{1+b_n^2}$

 $(c) \frac{b_n}{1+2b_n^2}$

(d) $\frac{b_n}{1-2b_n^2}$

Paragraph for Question Nos. 14 to 15

Let $f(n) = \sum_{r=2}^{n} \frac{r}{{}^{r}C_{2}^{r+1}C_{2}}$, $a = \lim_{n \to \infty} f(n)$ and $x^{2} - \left(2a - \frac{1}{2}\right)x + t = 0$ has two positive roots α and β .

- **14.** If value of f(7) + f(8) is $\frac{p}{q}$ where p and q are relatively prime, then (p-q) is :
 - (a) 53
- (b) 55
- (c) 57
- (d) 59

- **15.** Minimum value of $\frac{4}{\alpha} + \frac{1}{\beta}$ is :
 - (a) 2
- (b) 6
- (c) 3
- (d) 4

Advanced Problems in Mathematics for JEE

192

Paragraph for Question Nos. 16 to 17

Given the sequence of number $a_1, a_2, a_3, \ldots, a_{1005}$

which satisfy
$$\frac{a_1}{a_1+1} = \frac{a_2}{a_2+3} = \frac{a_3}{a_3+5} = \dots = \frac{a_{1005}}{a_{1005}+2009}$$

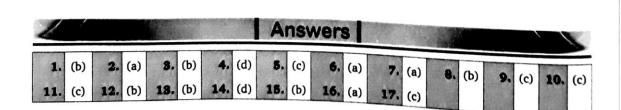
Also $a_1 + a_2 + a_3 + \dots + a_{1005} = 2010$

16. Nature of the sequence is:

- (a) A.P.
- (b) G.P.
- (c) A.G.P.
- (d) H.P.

17. 21st term of the sequence is equal to:

- (a) $\frac{86}{1005}$
- (b) $\frac{83}{1005}$
- (c) $\frac{82}{1005}$
- (d) $\frac{79}{1005}$



Sequence and Series 193

Exercise-4: Matching Type Problems

1.

	Column-i		Column-II
(A)	If three unequal numbers a , b , c are in A.P. and $b-a$, $c-b$, a are in G.P., then $\frac{a^3+b^3+c^3}{3abc}$ is equal to	(P)	1
(B)	Let x be the arithmetic mean and y, z be two geometric means between any two positive numbers, then $\frac{y^3 + z^3}{2xyz}$ is equal to	(Q)	4
(C)	If a , b , c be three positive number which form three successive terms of a G.P. and $c > 4b - 3a$, then the common ratio of the G.P. can be equal to	(R)	2
(D)	Number of integral values of x satisfying inequality, $-7x^2 + 8x - 9 > 0$ is	(S)	0

2.

1	Column-I		Column-II
(A)	The sequence a , b , 10, c , d are in A.P., then $a+b+c+d=$	(P)	6
(B)	Six G.M.'s are inserted between 2 and 5, if their product can be expressed as $(10)^n$. Then $n =$	(Q)	2
(C)	Let a_1 , a_2 , a_3 ,, a_{10} are in A.P. and h_1 , h_2 , h_3 ,, h_{10} are in H.P. such that $a_1 = h_1 = 1$ and $a_{10} = h_{10} = 6$, then $a_4h_7 =$	(R)	3
(D)	If $\log_3 2$, $\log_3 (2^x - 5)$ and $\log_3 \left(2^x - \frac{7}{2} \right)$ are in A.P., then $x = \frac{1}{2}$	(S)	20
		(T)	40

3.

1	Column-l		Column-II
(A)	The number of real values of x such that three numbers 2^x , 2^{x^2} and 2^{x^3} form a non-constant arithmetic progression in that order, is	(P)	0
(B)	Let $S = (a_2 - a_3) \left(\frac{1}{\sqrt{a_1} + \sqrt{a_2}} + \frac{1}{\sqrt{a_2} + \sqrt{a_3}} + \dots + \frac{1}{\sqrt{a_{n-1}} + \sqrt{a_n}} \right)$	(Q)	1
	where $a_1, a_2, a_3, \ldots, a_n$ are <i>n</i> consecutive terms of an A.P. and $a_i > 0 \ \forall i \in \{1, 2, \ldots, n\}$. If $a_1 = 225$, $a_n = 400$, then the value of $S+7$ is equal to		

194

Advanced Problems in Mathematics for JEE

(C)	Let S_n denote the sum of first n terms of an non constant A.P. and $S_{2n} = 3S_n$, then $\frac{S_{3n}}{2S_n}$ is equal to	(R)	2
(D)	If t_1, t_2, t_3, t_4 and t_5 are first 5 terms of an A.P., then $\frac{4(t_1 - t_2 - t_4) + 6t_3 + t_5}{3t_1}$ is equal to	(S)	3
		(T)	4

4. Column-II contains S and **Column-II** gives last digit of S.

	Column-l		Column-II
(A)	$S = \sum_{n=1}^{11} (2n-1)^2$	(P)	0
(B)	$S = \sum_{n=1}^{10} (2n-1)^3$	(Q)	1
(C)	$S = \sum_{n=1}^{18} (2n-1)^2 (-1)^n$	(R)	3
(D)	$S = \sum_{n=1}^{15} (2n-1)^3 (-1)^{n-1}$	(S)	5
		(T)	8

5.

	Column-l		Column-II
(A)	If $x, y \in R^+$ satisfy $\log_8 x + \log_4 y^2 = 5$ and $\log_8 y + \log_4 x^2 = 7$ then the value of $\frac{x^2 + y^2}{2080} = 6$	(P)	6
(B)	In $\triangle ABC$ A, B, C are in A.P. and sides a, b and c are in G.P. then $a^2(b-c)+b^2(c-a)+c^2(a-b)=$	(Q)	3
(C)	If a, b, c are three positive real numbers then the minimum value of $\frac{b+c}{a} + \frac{a+c}{b} + \frac{a+b}{c}$ is	(R)	0
(D)	In $\triangle ABC$, $(a+b+c)(b+c-a)=\lambda bc$ where $\lambda \in I$, then greatest value of λ is	(S)	2

Sequence and Series

195

6. Let $f(n) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{n}$ such that P(n) f(n+2) = P(n) f(n) + q(n). Where P(n), Q(n) are polynomials of least possible degree and P(n) has leading coefficient unity. Then match the following Column-I with Column-II.

	Column-l		Column-II
(A)	$\sum_{n=1}^{m} \frac{p(n)-2}{n}$	(P)	$\frac{m(m+1)}{2}$
(B)	$\sum_{n=1}^{m} \frac{q(n)-3}{2}$	(Q)	$\frac{5m(m+7)}{2}$
(C)	$\sum_{n=1}^{m} \frac{p(n) + q^{2}(n) - 11}{n}$	(R)	$\frac{3m(m+7)}{2}$
(D)	$\sum_{n=1}^{m} \frac{q^{2}(n) - p(n) - 7}{n}$	(s)	$\frac{m(m+7)}{2}$

Answers

- 1. $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow S$
- 2. $A \rightarrow R, B \rightarrow R, C \rightarrow P, D \rightarrow R$
- 3. $A \rightarrow P, B \rightarrow R, C \rightarrow S, D \rightarrow Q$
- 4. $A \rightarrow Q$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow S$
- 5. $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$
- 6. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$

4

Exercise-5: Subjective Type Problems

- **1.** Let a, b, c, d are four distinct consecutive numbers in A.P. The complete set of values of x for which $2(a-b)+x(b-c)^2+(c-a)^3=2(a-d)+(b-d)^2+(c-d)^3$ is true is $(-\infty, \alpha] \cup [\beta, \infty)$, then $|\alpha|$ is equal to :
- **2.** The sum of all digits of n for which $\sum_{r=1}^{n} r 2^r = 2 + 2^{n+10}$ is:
- 3. If $\lim_{n\to\infty} \sum_{r=1}^n \frac{r+2}{2^{r+1}r(r+1)} = \frac{1}{k}$, then k = 1
- **4.** The value of $\sum_{r=1}^{\infty} \frac{8r}{4r^4 + 1}$ is equal to :
- **5.** Three distinct non-zero real numbers form an A.P. and the squares of these numbers taken in same order form a G.P. If possible common ratio of G.P. are $3 \pm \sqrt{n}$, $n \in N$ then n =
- **6.** If $\sqrt{\underbrace{(1111.....1)}_{2n \text{ times}} \underbrace{(222.....2)}_{n \text{ times}}} = \underbrace{PPP.....P}_{n \text{ times}}$ then P =
- 7. In an increasing sequence of four positive integers, the first 3 terms are in A.P., the last 3 terms are in G.P. and the fourth term exceed the first term by 30, then the common difference of A.P. lying in interval [1, 9] is:
- **8.** The limit of $\frac{1}{n^4} \sum_{k=1}^n k(k+2)(k+4)$ as $n \to \infty$ is equal to $\frac{1}{\lambda}$, then $\lambda =$
- **9.** What is the last digit of $1+2+3+\ldots+n$ if the last digit of $1^3+2^3+\ldots+n^3$ is 1?
- **10.** Three distinct positive numbers a, b, c are in G.P., while $\log_c a$, $\log_b c$, $\log_a b$ are in A.P. with non-zero common difference d, then 2d =
- **11.** The numbers $\frac{1}{3}$, $\frac{1}{3}\log_x y$, $\frac{1}{3}\log_y z$, $\frac{1}{7}\log_z x$ are in H.P. If $y = x^r$ and $z = x^s$, then $4(r+s) = x^s$
- 12. If $\sum_{k=1}^{\infty} \frac{k^2}{3^k} = \frac{p}{q}$; where p and q are relatively prime positive integers. Find the value of (p+q).
- **13.** The sum of the terms of an infinitely decreasing Geometric Progression (GP) is equal to the greatest value of the function $f(x) = x^3 + 3x 9$ when $x \in [-4, 3]$ and the difference between the first and second term is f'(0). The common ratio $r = \frac{p}{q}$ where p and q are relatively prime positive integers. Find (p+q).
- **14.** A cricketer has to score 4500 runs. Let a_n denotes the number of runs he scores in the n^{th} match. If $a_1 = a_2 = \dots a_{10} = 150$ and a_{10} , a_{11} , a_{12} are in A.P. with common difference (-2). If N be the total number of matches played by him to score 4500 runs. Find the sum of the digits of N.

Sequence and Series 197

- **15.** If $x = 10 \sum_{n=3}^{100} \frac{1}{n^2 4}$, then $[x] = (\text{where } [\cdot] \text{ denotes greatest integer function})$
- **16.** Let $f(n) = \frac{4n + \sqrt{4n^2 1}}{\sqrt{2n + 1} + \sqrt{2n 1}}$, $n \in \mathbb{N}$ then the remainder when $f(1) + f(2) + f(3) + \dots + f(60)$ is divided by 9 is.
- 17. Find the sum of series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \dots \infty$, where the terms are the reciprocals of the positive integers whose only prime factors are two's and three's:
- **18.** Let $a_1, a_2, a_3, \ldots, a_n$ be real numbers in arithmatic progression such that $a_1 = 15$ and a_2 is an integer. Given $\sum_{r=1}^{10} (a_r)^2 = 1185$. If $S_n = \sum_{r=1}^n a_r$ and maximum value of n is N for which $S_n \ge S_{(n-1)}$, then find N-10.
- 19. Let the roots of the equation $24x^3 14x^2 + kx + 3 = 0$ form a geometric sequence of real numbers. If absolute value of k lies between the roots of the equation $x^2 + \alpha^2 x 112 = 0$, then the largest integral value of α is:
- **20.** How many ordered pair(s) satisfy $\log \left(x^3 + \frac{1}{3}y^3 + \frac{1}{9}\right) = \log x + \log y$
- **21.** Let a and b be positive integers. The value of xyz is 55 and $\frac{343}{55}$ when a, x, y, z, b are in arithmetic and harmonic progression respectively. Find the value of (a + b)

						Answ	vers					-	
1.	8	2.	9	3.	2	4.	2	5.	8	6.	3	7.	9
8.	4	9.	1	10.	3	11.	6	12.	5	13.	5	14.	7
15.	5	16.	8	17.	3	18.	6	19.	2	20.	1	21.	8

Downloaded From www.jeebooks.in

Advanced Problems in

MATHEMATICS

for

JEE (MAIN & ADVANCED)

by:

Vikas Gupta

Director
Vibrant Academy India(P) Ltd.
KOTA (Rajasthan)

Pankaj Joshi

Director
Vibrant Academy India(P) Ltd.
KOTA (Rajasthan)

CONTENTS

CALCULUS		
1. Function	3 – 29	
2. Limit	30 – 44	
3. Continuity, Differentiability and Differentiation	45 – 74	
4. Application of Derivatives	75 – 97	
5. Indefinite and Definite Integration	98 – 127	
6. Area Under Curves	128 – 134	
7. Differential Equations	135 – 144	
ALGEBRA		
8. Quadratic Equations	147 – 176	
9. Sequence and Series	177 – 197	
10. Determinants	198 – 206	
11. Complex Numbers	207 – 216	
12. Matrices	217 – 224	
13. Permutation and Combinations	225 – 233	
14. Binomial Theorem	234 – 242	
15. Probability	243 – 251	
16. Logarithms	252 – 264	
distance of the second of the		

CO-ORDINATE GEOMETRY	
17. Straight Lines	267 – 280
18. Circle	281 – 295
19. Parabola	296 – 302
20. Ellipse	303 – 307
21. Hyperbola	308 – 312
TRIGONOMETRY	
22. Compound Angles	315 – 334
23. Trigonometric Equations	
24. Solution of Triangles	335 – 343
25. Inverse Trigonometric Functions	344 – 359
2 3	360 – 370

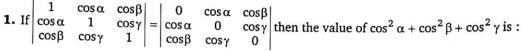
VECTOR & 3DIMENSIONAL GEOMETRY

26. Vector & 3Dimensional Geometry

373 - 389

Chapter 10 - Determinants

Exercise-1: Single Choice Problems



- (a) 1
- (b) $\frac{3}{2}$
- (c) $\frac{3}{8}$
- (d) $\frac{9}{4}$

2. Let the following system of equations

$$kx + y + z = 1$$
$$x + ky + z = k$$
$$x + y + kz = k2$$

has no solution. Find |k|.

- (a) (
- (b) 1
- (c) 2
- (d) 3

3. If
$$\begin{vmatrix} a & a^2 & 1+a^3 \\ b & b^2 & 1+b^3 \\ c & c^2 & 1+c^3 \end{vmatrix} = 0$$
 and vectors $(1, a, a^2)(1, b, b^2)$ and $(1, c, c^2)$ are non-coplanar, then the

product abc equals:

- (a) 2
- (b) -1
- (c) 1
- (d) 0

4. If the system of linear equations

$$x + 2ay + az = 0$$
$$x + 3by + bz = 0$$
$$x + 4cy + cz = 0$$

has a non-zero solution, then a, b, c:

(a) are in A.P.

(b) are in G.P.

(c) are in H.P.

- (d) satisfy a + 2b + 3c = 0
- 5. If the number of quadratic polynomials $ax^2 + 2bx + c$ which satisfy the following conditions:

199 Determinants

(ii) $a, b, c \in \{1, 2, 3, \dots, 2001, 2002\}$

(iii) x + 1 divides $ax^2 + 2bx + c$

is equal to 1000 λ , then find the value of λ .

(a) 2002

(b) 2001

(c) 2003

(d) 2004

6. If the system of equations 2x + ay + 6z = 8, x + 2y + z = 5, 2x + ay + 3z = 4 has a unique solution then 'a' cannot be equal to:

(b) 3

7. If one of the roots of the equation $\begin{vmatrix} 7 & 6 & x^2 - 13 \\ 2 & x^2 - 13 & 2 \\ x^2 - 13 & 3 & 7 \end{vmatrix} = 0 \text{ is } x = 2 \text{, then sum of all other}$

five roots is:

(a) -2

(b) 0

(c) $2\sqrt{5}$

(d) $\sqrt{15}$

8. The system of equations

$$kx + (k+1)y + (k-1)z = 0$$

$$(k+1)x + ky + (k+2)z = 0$$

$$(k-1)x + (k+2)y + kz = 0$$

has a nontrivial solution for:

(a) Exactly three real values of k.

(b) Exactly two real values of k.

(c) Exactly one real value of k.

(d) Infinite number of values of k.

9. If a_1 , a_2 , a_3 ,...., a_n are in G.P. and $a_i > 0$ for each i, then the determinant

$$\Delta = \begin{vmatrix} \log a_n & \log a_{n+2} & \log a_{n+4} \\ \log a_{n+6} & \log a_{n+8} & \log a_{n+10} \\ \log a_{n+12} & \log a_{n+14} & \log a_{n+16} \end{vmatrix}$$
 is equal to:

(a) 0

(b) $\log \left(\sum_{i=1}^{n^2+n} a_i \right)$

(d) 2

10. If
$$D_1 = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$
 and $D_2 = \begin{vmatrix} a_1 + 2a_2 + 3a_3 & 2a_3 & 5a_2 \\ b_1 + 2b_2 + 3b_3 & 2b_3 & 5b_2 \\ c_1 + 2c_2 + 3c_3 & 2c_3 & 5c_2 \end{vmatrix}$ then $\frac{D_2}{D_1}$ is equal to:

(d) -20

(a) 10 (b) = 10
11. If
$$\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$
 and $\Delta_2 = \begin{vmatrix} 1 & bc & a \\ 1 & ac & b \\ 1 & ab & c \end{vmatrix}$ then:

(a) $\Delta_1 = \Delta_2$

(b) $\Delta_1 = 2\Delta_2$

(c) $\Delta_1 + \Delta_2 = 0$ (d) $\Delta_1 + 2\Delta_2 = 0$

(a) $\Delta_1 = \Delta_2$ 12. The value of the determinant $\begin{vmatrix} 1 & 0 & -1 \\ a & 1 & 1-a \\ b & a & 1+a-b \end{vmatrix}$ depends on:

(a) only a

(b) only b

(c) neither a nor b (d) both a and b

13. Sum of solutions of the equation $\begin{vmatrix} 1 & 2 & x \\ 2 & 3 & x^2 \\ 3 & 5 & 2 \end{vmatrix} = 10 \text{ is } :$

(b)
$$-1$$

(d) 4

x + dx+e x+f**14.** If $D = \begin{vmatrix} x+d+1 & x+e+1 & x+f+1 \end{vmatrix}$ then D does not depend on : x+b x+c

(d) x

 $\begin{vmatrix} x-y-z & 2x & 2x \\ 2y & y-z-x & 2y \\ 2z & 2z & z-x-y \end{vmatrix} =$ 15. The value of the determinant

(a)
$$xyz(x+y+z)^2$$

(b)
$$(x+y-z)(x+y+z)^2$$

(c)
$$(x+y+z)^3$$

(d)
$$(x+y+z)^2$$

16. A rectangle ABCD is inscribed in a circle. Let PQ be the diameter of the circle parallel to the side AB. If $\angle BPC = 30^\circ$, then the ratio of the area of rectangle to the area of circle is:

(a)
$$\frac{\sqrt{3}}{7}$$

(b)
$$\frac{\sqrt{3}}{2\pi}$$

(c)
$$\frac{3}{2}$$

(d)
$$\frac{\sqrt{3}}{9\pi}$$

17. Let ab = 1, $\Delta = \begin{vmatrix} 1 + a^2 - b^2 & 2ab & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix}$ then the minimum value of Δ is:

18. The determinant $\begin{vmatrix} 2 & a+b+c+d \\ a+b+c+d & 2(a+b)(c+d) \end{vmatrix}$ ab + cdab(c+d)+cd(a+b)=0 for ab(c+d)+cd(a+b)ab + cd

(a)
$$a+b+c+d=0$$

(b)
$$ab + cd = 0$$

(c)
$$ab(c+d)+cd(a+b)=0$$

19. Let det $A = \begin{vmatrix} l & m & n \\ p & q & r \\ 1 & 1 & 1 \end{vmatrix}$ and

if $(l-m)^2 + (p-q)^2 = 9$, $(m-n)^2 + (q-r)^2 = 16$, $(n-l)^2 + (r-p)^2 = 25$, then the value of (det. A)2 equals:

20. The number of distinct real values of K such that the system of equations x + 2y + z = 1, x + 3y + 4z = K, $x + 5y + 10z = K^2$ has infinitely many solutions is:

Determinants 201

21. If $\begin{vmatrix} (x+1) & (x+1)^2 & (x+1)^3 \\ (x+2) & (x+2)^2 & (x+2)^3 \\ (x+3) & (x+3)^2 & (x+3)^3 \end{vmatrix}$ is expressed as a polynomial in x, then the term independent of

x is:

(a) 0

(b) 2

(c) 12

(d) 16

22. If A, B, C are the angles of triangle ABC, then the minimum value of $\begin{vmatrix} -2 & \cos C & \cos B \\ \cos C & -1 & \cos A \\ \cos B & \cos A & -1 \end{vmatrix}$ is

equal to:

(a) 0

(b) -1

(c) 1

(d) -2

23. If the system of linear equations

$$x + 2ay + az = 0$$

$$x + 3by + bz = 0$$

$$x + 4cy + cz = 0$$

has a non-zero solution then a, b, c are in

(a) A.P.

(b) G.I

(c) H.P.

(d) None of these

24. If a, b and c are the roots of the equation $x^3 + 2x^2 + 1 = 0$, find $\begin{vmatrix} a & b & x \\ b & c & a \\ c & a & b \end{vmatrix}$.

(a) 8

(b) -8

(c) 0

(d) 2

25. The system of homogeneous equation $\lambda x + (\lambda + 1)y + (\lambda - 1)z = 0$,

 $(\lambda + 1)x + \lambda y + (\lambda + 2)z = 0$, $(\lambda - 1)x + (\lambda + 2)y + \lambda z = 0$ has non-trivial solution for:

(a) exactly three real values of λ

(b) exactly two real values of λ

(c) exactly three real value of λ

(d) infinitely many real value of λ

26. If one of the roots of the equation $\begin{vmatrix} 7 & 6 & x^2 - 13 \\ 2 & x^2 - 13 & 2 \\ x^2 - 13 & 3 & 7 \end{vmatrix} = 0$ is x = 2, then sum of all other

five roots is:

(a) -2

(b) 0

(c) 2√5

(d) $\sqrt{15}$

Answers 5. (a) 6. (c) (b) 4. (c) 7. (a) 2. 3. 8. (c) (c) 9. 1. (a) (a) 10. (b) 14. (d) **15.** (c) **16.** (a) 17. (c) (b) 13. 18. (d) 12. (c) 19. 11. (c) (c) **20.** (c) (a) 25. (c) **26.** (a) 23. (c) 24. 21. 22. (b)

Exercise-2: One or More than One Answer is/are Correct

1. Let
$$f(a, b) = \begin{vmatrix} a & a^2 & 0 \\ 1 & (2a+b) & (a+b)^2 \\ 0 & 1 & (2a+3b) \end{vmatrix}$$
, then

- (a) (2a+b) is a factor of f(a, b)
- (b) (a+2b) is a factor of f(a, b)
- (c) (a+b) is a factor of f(a, b)
- (d) a is a factor of f(a, b)

2. If
$$\begin{vmatrix} 1 + \cos^2 \theta & \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & 1 + \sin^2 \theta & 2\sqrt{3} \tan \theta \\ \cos^2 \theta & \sin^2 \theta & 1 + 2\sqrt{3} \tan \theta \end{vmatrix} = 0 \text{ then } \theta \text{ may be } :$$

- (c) $\frac{7\pi}{6}$
- (d) $\frac{11\pi}{6}$

3. Let
$$\Delta = \begin{vmatrix} a & a+d & a+3d \\ a+d & a+2d & a \\ a+2d & a & a+d \end{vmatrix}$$
 then:

(a) \triangle depends on a

- (b) \triangle depends on d
- (c) Δ is independent of a, d
- (d) $\Delta = 0$
- **4.** The value(s) of λ for which the system of equations

$$(1-\lambda)x + 3y - 4z = 0$$
$$x - (3+\lambda)y + 5z = 0$$
$$3x + y - \lambda z = 0$$

possesses non-trivial solutions.

- (a) -1
- (c) 1
- (d) 2

5. Let
$$D(x) = \begin{vmatrix} x^2 + 4x - 3 & 2x + 4 & 13 \\ 2x^2 + 5x - 9 & 4x + 5 & 26 \\ 8x^2 - 6x + 1 & 16x - 6 & 104 \end{vmatrix} = \alpha x^3 + \beta x^2 + \gamma x + \delta \text{ then } :$$

- (a) $\alpha + \beta = 0$
- (b) $\beta + \gamma = 0$
- (c) $\alpha + \beta + \gamma + \delta = 0$ (d) $\alpha + \beta + \gamma = 0$

6. Let
$$D(x) = \begin{vmatrix} x^2 + 4x - 3 & 2x + 4 & 13 \\ 2x^2 + 5x - 9 & 4x + 5 & 26 \\ 8x^2 - 6x + 1 & 16x - 6 & 104 \end{vmatrix} = \alpha x^3 + \beta x^2 + \gamma x + \delta \text{ then } :$$

- (a) $\alpha + \beta = 0$
- (b) $\beta + \gamma = 0$
- (c) $\alpha + \beta + \gamma + \delta = 0$ (d) $\alpha + \beta + \gamma = 0$
- 7. If the system of equations

$$ax + y + 2z = 0$$

$$x + 2y + z = b$$

$$2x + y + az = 0$$

has no solution then (a + b) can be equals to:

- (a) -1
- (b) 2
- (c) 3
- (d) 4

Determinants 203

8. If the system of equations

$$ax + y + 2z = 0$$

$$x + 2y + z = b$$

$$2x + y + az = 0$$

has no solution then (a + b) can be equal to

(a) -1

(b) 2

(c) 3

(d) 4

					Ansv	vers					
1.	(b, c, d)	2.	(b, d)	3.	(a, b)	4.	(a, b)	5.	(a, b, d)	6.	(a, b, d)
7.	(b, c, d)	8.	(b)								

204

Advanced Problems in Mathematics for JEE

Exercise-3 : Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Consider the system of equations

$$2x + \lambda y + 6z = 8$$

$$x + 2y + \mu z = 5$$

$$x + y + 3z = 4$$

The system of equations has:

1. No solution if:

(a)
$$\lambda = 2, \mu = 3$$

(b)
$$\lambda \neq 2, \mu = 3$$

(c)
$$\lambda \neq 2, \mu \neq 3$$

(d)
$$\lambda = 2, \mu \in R$$

2. Exactly one solution if:

(a)
$$\lambda \neq 2, \mu \neq 3$$

(b)
$$\lambda = 2, \mu = 3$$

(c)
$$\lambda \neq 2$$
, $\mu = 3$

(d)
$$\lambda = 2, \mu \in R$$

3. Infinitely many solutions if:

(a)
$$\lambda \neq 2, \mu \neq 3$$

(b)
$$\lambda = 2, \mu \neq 3$$

(c)
$$\lambda \neq 2, \mu = 3$$

(d)
$$\lambda = 2, \mu \in R$$

1. (b) 2. (a) 3. (d)

Determinants

• • • • • • • • •

205

Exercise-4: Subjective Type Problems

- **1.** If 3^n is a factor of the determinant $\begin{vmatrix} 1 & 1 & 1 \\ {}^nC_1 & {}^{n+3}C_1 & {}^{n+6}C_1 \\ {}^nC_2 & {}^{n+3}C_2 & {}^{n+6}C_2 \end{vmatrix}$ then the maximum value of n is
- **2.** Find the value of λ for which $\begin{vmatrix} 2a_1 + b_1 & 2a_2 + b_2 & 2a_3 + b_3 \\ 2b_1 + c_1 & 2b_2 + c_2 & 2b_3 + c_3 \\ 2c_1 + a_1 & 2c_2 + a_2 & 2c_3 + a_3 \end{vmatrix} = \lambda \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$
- 3. Find the co-efficient of x in the expansion of the determinant $\begin{vmatrix} (1+x)^2 & (1+x)^4 & (1+x)^6 \\ (1+x)^3 & (1+x)^6 & (1+x)^9 \\ (1+x)^4 & (1+x)^8 & (1+x)^{12} \end{vmatrix}$
- 4. If $x, y, z \in R$ and $\begin{vmatrix} x & y^2 & z^3 \\ x^4 & y^5 & z^6 \\ x^7 & y^8 & z^9 \end{vmatrix} = 2$ then find the value of $\begin{vmatrix} y^5z^6(z^3 y^3) & x^4z^6(x^3 z^3) & x^4y^5(y^3 x^3) \\ y^2z^3(y^6 z^6) & xz^3(z^6 x^6) & xy^2(x^6 y^6) \\ y^2z^3(z^3 y^3) & xz^3(x^3 z^3) & xy^2(y^3 x^3) \end{vmatrix}.$
- 5. If the system of equations:

$$2x + 3y - z = 0$$
$$3x + 2y + kz = 0$$
$$4x + y + z = 0$$

have a set of non-zero integral solutions then, find the smallest positive value of z.

- **6.** Find $a \in R$ for which the system of equations 2ax 2y + 3z = 0; x + ay + 2z = 0 and 2x + az = 0 also have a non-trivial solution.
- 7. If three non-zero distinct real numbers form an arithmatic progression and the squares of these numbers taken in the same order constitute a geometric progression. Find the sum of all possible common ratios of the geometric progression.
- **8.** Let $\Delta_1 = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$, $\Delta_2 = \begin{vmatrix} 6a_1 & 2a_2 & 2a_3 \\ 3b_1 & b_2 & b_3 \\ 12c_1 & 4c_2 & 4c_3 \end{vmatrix}$ and $\Delta_3 = \begin{vmatrix} 3a_1 + b_1 & 3a_2 + b_2 & 3a_3 + b_3 \\ 3b_1 & 3b_2 & 3b_3 \\ 3c_1 & 3c_2 & 3c_3 \end{vmatrix}$

then $\Delta_3 - \Delta_2 = k\Delta_1$, find k.

9. The minimum value of determinant $\Delta = \begin{vmatrix} 1 & \cos \theta & 1 \\ -\cos \theta & 1 & \cos \theta \\ -1 & -\cos \theta & 2 \end{vmatrix} \forall \theta \in R \text{ is :}$

10. For a unique value of μ & λ , the system of equations given by

$$x+y+z=6$$

$$x + 2y + 3z = 14$$

$$2x + 5y + \lambda z = \mu$$

has infinitely many solutions, then $\frac{\mu-\lambda}{4}$ is equal to

- **11.** Let $\lim_{n\to\infty} n \sin(2\pi e \lfloor \frac{n}{n} \rfloor) = k\pi$, where $n \in \mathbb{N}$. Find k:
- 12. If the system of linear equations

$$(\cos\theta)x + (\sin\theta)y + \cos\theta = 0$$

$$(\sin\theta)x + (\cos\theta)y + \sin\theta = 0$$

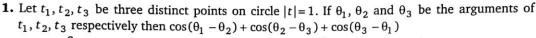
$$(\cos\theta)x + (\sin\theta)y - \cos\theta = 0$$

is consistent, then the number of possible values of $\theta,\theta\in[0,2\pi]$ is :

1						Ansv	vers					1	1
1.	3	2.	9	3.	0	4.	4	5.	5	6.	2	7	E.
8.	3	9.	3	10.	7	11.	2	12.	2		_		0

Chapter 11 - Complex Numbers

Exercise-1: Single Choice Problems



(a)
$$\geq -\frac{3}{2}$$

(b)
$$\leq -\frac{3}{2}$$

(c)
$$\geq \frac{3}{2}$$

2. The number of points of intersection of the curves represented by

$$\arg(z-2-7i) = \cot^{-1}(2)$$
 and $\arg\left(\frac{z-5i}{z+2-i}\right) = \pm \frac{\pi}{2}$

(c) 2

(d) None of these

3. All three roots of $az^3 + bz^2 + cz + d = 0$, have negative real part, $(a, b, c \in R)$ then:

(a) All a, b, c, d have the same sign

(b) a, b, c have same sign

(c) a, b, d have same sign

(d) b, c, d have same sign

4. Let z_1 and z_2 be two roots of the equation $z^2 + az + b = 0$, z being complex number. Further, assume that the origin, z_1 and z_2 form an equilateral triangle, then :

(a) $a^2 = b$

(b) $a^2 = 2b$

(c) $a^2 = 3b$

(d) $a^2 = 4b$

5. If z and ω are two non-zero complex numbers such that $|z\omega|=1$, and $\arg(z)-\arg(\omega)=\frac{\pi}{2}$, then

 $\bar{z}\omega$ is equal to :

(a) 1

(b) -1

(c) i

(d) -i

6. If ω be an imaginary n^{th} root of unity, then $\sum_{r=1}^{n} (ar+b) \omega^{r-1}$ is equal to:

(a) $\frac{n(n+1)a}{2\omega}$ (b) $\frac{nb}{1-n}$

(d) None of these

(c) $2+\sqrt{2}$

16. If $|z-2i| \le \sqrt{2}$, then the maximum value of |3+i(z-1)| is:

(b) $2\sqrt{2}$

(a) $\sqrt{2}$

(d) 17

(d) $3 + 2\sqrt{2}$

17. Let $x - \frac{1}{x} = (\sqrt{2})i$ where $i = \sqrt{-1}$. Then the value of $x^{2187} - \frac{1}{x^{2187}}$ is:

(b) $-i\sqrt{2}$

18. If $z = re^{i\theta}$ ($r > 0 \& 0 \le \theta < 2\pi$) is a root of the equation $z^8 - z^7 + z^6 - z^5 + z^4 - z^3 + z^2 - z + 1 = 0$ then number of values of ' θ ' is :

(c) 8

19. Let *P* and *Q* be two points on the circle |w| = r represented by w_1 and w_2 respectively, then the complex number representing the point of intersection of the tangents at P and Q is:

 $\frac{w_1 w_2}{2(w_1 + w_2)}$ (b) $\frac{2w_1 \overline{w}_2}{w_1 + w_2}$

(c) $\frac{2w_1w_2}{w_1 + w_2}$ (d) $\frac{2\overline{w}_1w_2}{w_1 + w_2}$

20. If z_1 , z_2 , z_3 are complex number, such that $|z_1| = 2$, $|z_2| = 3$, $|z_3| = 4$, then maximum value of $|z_1 - z_2|^2 + |z_2 - z_3|^2 + |z_3 - z_1|^2$ is:

(c) 87

(d) None of these

21. If $Z = \frac{7+i}{3+4i}$, then find Z^{14} :

(a) 2^7

(b) $(-2)^7$

(c) $(2^7)i$

(d) $(-2^7)i$

22. If |Z-4|+|Z+4|=10, then the difference between the maximum and the minimum values of |Z| is:

(a) 2

(b) 3

(c) $\sqrt{41} - 5$

(d) 0

1.	(a)	2.	(a)	3.	(c)	4.	(c)	5.	(d)	6.	(c)	7.	(b)	8.	(d)	9.	(b)	10.
	(a)		(a) (c)	13.	5 8	14.			(c)									

Exercise-2: One or More than One Answer is/are Correct

1. Let Z_1 and Z_2 are two non-zero complex number such that $|Z_1 + Z_2| = |Z_1| = |Z_2|$, then $\frac{Z_1}{Z_2}$ may

www.jeebooks.in

be:

(a) $1+\omega$

(b) $1 + \omega^2$ (d) ω^2

(c) ω

2. Let z_1 , z_2 and z_3 be three distinct complex numbers, satisfying $|z_1| = |z_2| = |z_3| = 1$. Which of

(a) If
$$\arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$$
 then $\arg\left(\frac{z - z_1}{z - z_2}\right) > \frac{\pi}{4}$ where $|z| > 1$

(c)
$$\lim \left(\frac{(z_1 + z_2)(z_2 + z_3)(z_3 + z_1)}{z_1 \cdot z_2 \cdot z_3} \right) = 0$$

(d) If
$$|z_1 - z_2| = \sqrt{2} |z_1 - z_3| = \sqrt{2} |z_2 - z_3|$$
, then $\text{Re}\left(\frac{z_3 - z_1}{z_3 - z_2}\right) = 0$

3. The triangle formed by the complex numbers z, iz, i^2z is:

(a) equilateral

(b) isosceles

(c) right angled

(d) isosceles but not right angled

4. If $A(z_1)$, $B(z_2)$, $C(z_3)$, $D(z_4)$ lies on |z| = 4 (taken in order), where $z_1 + z_2 + z_3 + z_4 = 0$

(a) Max. area of quadrilateral ABCD = 32

(b) Max. area of quadrilateral ABCD = 16

(c) The triangle $\triangle ABC$ is right angled

(d) The quadrilateral ABCD is rectangle

5. Let z_1 , z_2 and z_3 be three distinct complex numbers satisfying $|z_1| = |z_2| = |z_3| = 1$. Which of the following is/are true?

(a) If
$$\arg\left(\frac{z_1}{z_2}\right) = \frac{\pi}{2}$$
 then $\arg\left(\frac{z - z_1}{z - z_2}\right) > \frac{\pi}{4}$ where $|z| > 1$

(c)
$$\operatorname{Im}\left(\frac{(z_1 + z_2)(z_2 + z_3)(z_3 + z_1)}{z_1 \cdot z_2 \cdot z_3}\right) = 0$$

(d) If
$$|z_1 - z_2| = \sqrt{2} |z_1 - z_3| = \sqrt{2} |z_2 - z_3|$$
, then $\text{Re}\left(\frac{z_3 - z_1}{z_3 - z_2}\right) = 0$

- **6.** If $z_1 = a + ib$ and $z_2 = c + id$ are two complex numbers where a, b, c, $d \in R$ and $|z_1| = |z_2| = 1$ and Im $(z_1 \bar{z}_2) = 0$. If $w_1 = a + ic$ and $w_2 = b + id$, then:
 - (a) Im $(w_1 \overline{w}_2) = 0$

(b) Im $(\overline{w}_1 w_2) = 0$

(c) $\operatorname{Im}\left(\frac{w_1}{w_2}\right) = 0$

- (d) $\operatorname{Re}\left(\frac{w_1}{\overline{w}_2}\right) = 0$
- 7. The solutions of the equation $z^4 + 4iz^3 6z^2 4iz i = 0$ represent

vertices of a convex polygon in the complex plane. The area of the polygon is:

- (a) $2^{1/2}$
- (b) $2^{3/2}$
- (c) $2^{5/2}$
- (d) $2^{5/3}$
- **8.** Least positive argument of the 4th root of the complex number $2-i\sqrt{12}$ is:
 - (a) $\frac{\pi}{6}$
- (b) $\frac{\pi}{100}$
- (c) $\frac{5\pi}{12}$
- (d) $\frac{7\pi}{12}$
- **9.** Let ω be the imaginary cube root of unity and $(a + b\omega + c\omega^2)^{2015} = (a + b\omega^2 + c\omega)^{2015}$

where a, b, c are unequal real numbers. Then the value of $a^2 + b^2 + c^2 - ab - bc - ca$ equals:

- (a) 0
- **(b)** 1
- (c) 2
- (d)
- **10.** Let n be a positive integer and a complex number with unit modulus is a solution of the equation $z^n + z + 1 = 0$ then the value of n can be:
 - (a) 62
- (b) 155
- (c) 221
- (d) 196

/_	1				Ansv	vers					
1.	(c, d)	2.	(b, c, d)	3.	(b, c)	4.	(a, c, d)	5.	(b, c, d)	6.	(a, b, c
7.	(d)	8.	(c)	9.	(b)	10.	(a, b, c)				

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let f(z) is of the form $\alpha z + \beta$, where α , β are constants and α , β , z are complex numbers such that $|\alpha| \neq |\beta|$. f(z) satisfies following properties:

- (i) If imaginary part of z is non zero, then $f(z) + \overline{f(z)} = f(\overline{z}) + \overline{f(\overline{z})}$
- (ii) If real part of z is zero, then $f(z) + \overline{f(z)} = 0$
- (iii) If z is real, then $\overline{f(z)} f(z) > (z+1)^2 \ \forall \ z \in R$.
- 1. $\frac{4x^2}{(f(1)-f(-1))^2} + \frac{y^2}{(f(0))^2} = 1$, $x, y \in R$, in (x, y) plane will represent :
 - (a) hyperbola
- (b) circle
- (c) ellipse
- (d) pair of line
- 2. Consider ellipse $S: \frac{x^2}{(\text{Re}(\alpha))^2} + \frac{y^2}{(\text{Im}(\beta))^2} = 1$, $x, y \in R$ in (x, y) plane, then point (1, 1) will lie:
 - (a) outside the ellipse S

(b) inside the ellipse S

(c) on the ellipse S

(d) none of these

Paragraph for Question Nos. 3 to 5

Let z_1 and z_2 be complex numbers, such what $z_1^2 - 4z_2 = 16 + 20i$. Also suppose that roots α and β of $t^2 + z_1t + z_2 + m = 0$ for some complex number m satisfy $|\alpha - \beta| = 2\sqrt{7}$, then:

- 3. The complex number 'm' lies on:
 - (a) a square with side 7 and centre (4, 5)
- (b) a circle with radius 7 and centre (4, 5)
- (c) a circle with radius 7 and centre (-4, 5)
- (d) a square with side 7 and centre (-4, 5)
- **4.** The greatest value of |m| is :
 - (a) $5\sqrt{21}$
- (b) $5 + \sqrt{23}$
- (c) $7 + \sqrt{43}$
- (d) $7 + \sqrt{41}$

- **5.** The least value of |m| is:
 - (a) $7 \sqrt{41}$
- (b) $7 \sqrt{43}$
- (c) $5 \sqrt{23}$
- (d) $5 + \sqrt{21}$

Paragraph for Question Nos. 6 to 7

Let $z_1 = 3$ and $z_2 = 7$ represent two points A and B respectively on complex plane. Let the curve C_1 be the locus of point P(z) satisfying $|z - z_1|^2 + |z - z_2|^2 = 10$ and the curve C_2 be the locus of point P(z) satisfying $|z - z_1|^2 + |z - z_2|^2 = 16$.

- **6.** Least distance between curves C_1 and C_2 is:
 - (a) 4
- (b) 3
- (c) 2
- (d) 1

Complex Numbers

7. The locus of point from which tangents drawn to C_1 and C_2 are perpendicular, is:

(a)
$$|z-5|=4$$

(b)
$$|z-3|=2$$

(c)
$$|z-5|=3$$

(d)
$$|z-5| = \sqrt{5}$$

Paragraph for Question Nos. 8 to 9

In the Argand plane Z_1 , Z_2 and Z_3 are respectively the vertices of an isosceles triangle ABC with AC = BC and $\angle CAB = \theta$. If $I(Z_4)$ is the incentre of triangle, then:

8. The value of $\left(\frac{AB}{IA}\right)^2 \left(\frac{AC}{AB}\right)$ is equal to :

(a)
$$\left| \frac{(Z_2 - Z_1)(Z_1 - Z_3)}{(Z_4 - Z_1)} \right|$$

(b)
$$\left| \frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)} \right|$$

(c)
$$\left| \frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)^2} \right|$$

(d)
$$\frac{(Z_2 + Z_1)(Z_3 + Z_1)}{(Z_4 + Z_1)}$$

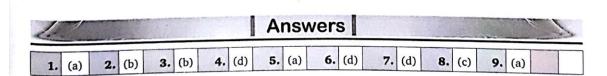
9. The value of $(Z_4 - Z_1)^2 (1 + \cos \theta) \sec \theta$ is :

(a)
$$(Z_2 - Z_1)(Z_3 - Z_1)$$

(b)
$$\frac{(Z_2 - Z_1)(Z_3 - Z_1)}{Z_4 - Z_1}$$

(c)
$$\frac{(Z_2 - Z_1)(Z_3 - Z_1)}{(Z_4 - Z_1)^2}$$

(d)
$$(Z_2 - Z_1) (Z_3 - Z_1)^2$$



Exercise-4: Matching Type Problems

1. In a $\triangle ABC$, the side lengths BC, CA and AB are consecutive positive integers in increasing order.

	Column-I		Column-II
(A)	If z_1 , z_2 and z_3 be the affixes of vertices A , B and C respectively in argand plane, such that $\left \arg \left(\frac{z_1 - z_3}{z_2 - z_3} \right) \right = \left 2 \arg \left(\frac{z_3 - z_1}{z_2 - z_1} \right) \right $,	(P)	2
(B)	then biggest side of the triangle is Let \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} be the position vectors of vertices \overrightarrow{A} , \overrightarrow{B} and \overrightarrow{C} respectively. If $(\overrightarrow{c}-\overrightarrow{a}) \cdot (\overrightarrow{b}-\overrightarrow{c}) = 0$ then the value of	(Q)	3
(C)	lespectively. If $(c-a) \cdot (b-c) = 0$ then the value of $a + b + b + b + c + c + c + c + c + c + c$	(R)	4
(0)	represent the lines AB and AC respectively and $\left \frac{a_1 b_2 - a_2 b_1}{a_1 a_2 + b_1 b_2} \right = \frac{4}{3}$ then the value of $s - c$		
	(where s is the semiperimeter) $a = BC$, $b = CA$, $c = AB$		
(D)	If the altitudes of $\triangle ABC$ are in harmonic progression then the side length 'b' can be	(S)	6
		(T)	12

2. Let ABCDEF is a regular hexagon $A(z_1)$, $B(z_2)$, $C(z_3)$, $D(z_4)$, $E(z_5)$, $F(z_6)$ in argand plane where A, B, C, D, E and F are taken in anticlockwise manner. If $z_1 = -2$, $z_3 = 1 - \sqrt{3}i$.

	Column-I		Column-II
(A)	If $z_2 = a + ib$, then $2a^2 + b^2$ is equal to	(P)	8
(B)	The square of the inradius of hexagon is	(Q)	7
(C)	The area of region formed by point $P(z)$ lying inside the incircle of hexagon and satisfying $\frac{\pi}{3} \le \arg(z) \le \frac{5\pi}{6}$ is $\frac{m}{n}\pi$, where m, n are relatively prime natural numbers, then $m + n$ is equal to	(R)	5
(D)	The value of $z_4^2 - z_1^2 - z_2^2 - z_3^2 - z_5^2 - z_6^2$ is equal to	(S)	3
		(T)	2

Complex Numbers

215

3.

	Column-l		Column-II
(A)	Let ω be a non real cube root of unity then the number of distinct elements in the set $\{(1 + \omega + \omega^2 + + \omega^n)^m;$ $n, m \in N\}$ is:	(P)	3
(B)	Let ω and ω^2 be non real cube root of unity. The least possible degree of a polynomial with real co-efficients having roots		4
	2ω , $(2+3\omega)$, $(2+3\omega)^2$, $(2-\omega-\omega^2)$ is		
(C)	Let $\alpha = 6 + 4i$ and $\beta = 2 + 4i$ are two complex numbers on Argand plane. A complex number z satisfying amp $\left(\frac{z-\alpha}{z-\beta}\right) = \frac{\pi}{6}$ moves on a major		5
(D)	segment of a circle whose radius is Let z_1 , z_2 , z_3 are complex numbers denoting the vertices of an equilateral triangle <i>ABC</i> having circumradius equals to unity. If <i>P</i> denotes any arbitrary point on its circumcircle then the value of $\frac{1}{2}((PA)^2 + (PB)^2 + (PC)^2)$ equals to		7

Answers

```
1. A \rightarrow S; B \rightarrow T; C \rightarrow S; D \rightarrow Q, R, S, T
```

^{2.} $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow Q$; $D \rightarrow P$

^{3.} $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow P$

Exercise-5: Subjective Type Problems

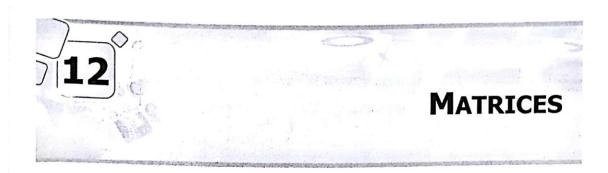
- **1.** Let complex number 'z' satisfy the inequality $2 \le |z| \le 4$. A point *P* is selected in this region at random. The probability that argument of *P* lies in the interval $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ is $\frac{1}{K}$, then $K = \frac{\pi}{4}$
- **2.** Let z be a complex number satisfying $|z-3| \le |z-1|$, $|z-3| \le |z-5|$, $|z-i| \le |z+i|$ and $|z-i| \le |z-5i|$. Then the area of region in which z lies is A square units, where A =
- **3.** Complex number z_1 and z_2 satisfy $z + \overline{z} = 2|z-1|$ and $\arg(z_1 z_2) = \frac{\pi}{4}$. Then the value of $\operatorname{Im}(z_1 + z_2)$ is:
- **4.** If $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 36$, then $|z_1 + z_2 + z_3|$ is equal to :
- **5.** If $|z_1|$ and $|z_2|$ are the distances of points on the curve $5z\overline{z} 2i(z^2 \overline{z}^2) 9 = 0$ which are at maximum and minimum distance from the origin, then the value of $|z_1| + |z_2|$ is equal to:
- **6.** Let $\frac{1}{a_1 + \omega} + \frac{1}{a_2 + \omega} + \frac{1}{a_3 + \omega} + \dots + \frac{1}{a_n + \omega} = i$

where $a_1, a_2, a_3, \ldots a_n \in R$ and ω is imaginary cube root of unity, then evaluate $\sum_{r=1}^n \frac{2a_r-1}{a_r^2-a_r+1}.$

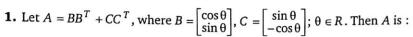
- **7.** If $|z_1| = 2$, $|z_2| = 3$, $|z_3| = 4$ and $|2z_1 + 3z_2 + 4z_3| = 9$, then value of $|8z_2z_3 + 27z_3z_1 + 64z_1z_2|^{1/3}$ is:
- **8.** The sum of maximum and minimum modulus of a complex number z satisfying $|z-25i| \le 15$, $i=\sqrt{-1}$ is S, then $\frac{S}{10}$ is :

2/	/					Answ	ver	s					
1. 8.	4 5	2.	6	3.	2	4.	6	5.	4	6.	0	7.	6

900



Exercise-1: Single Choice Problems



(a)
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
 (b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

(b)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

2. Let $A = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$. The only correct statement about the matrix A is :

(b)
$$A^2 = I$$
, where I is a unit matrix

(c)
$$A^{-1}$$
 does not exist

(d)
$$A = (-1)I$$
, where I is a unit matrix

3. Let
$$A = [a_{ij}]_{3\times 3}$$
 be such that $a_{ij} = \begin{bmatrix} 3; & \text{when } \hat{i} = \hat{j} \\ 0; & \hat{i} \neq \hat{j} \end{bmatrix}$, then $\left\{ \frac{\det(\text{adj } (\text{adj } A))}{5} \right\}$ equals:

(where {·} denotes fractional part function)

(a)
$$\frac{2}{5}$$

(b)
$$\frac{1}{5}$$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{1}{3}$$

(where
$$\{\}$$
 denotes fractional part random)
(a) $\frac{2}{5}$ (b) $\frac{1}{5}$ (c) $\frac{2}{3}$ (d) $\frac{1}{3}$
4. If $A^{-1} = \begin{bmatrix} \sin^2 \alpha & 0 & 0 \\ 0 & \sin^2 \beta & 0 \\ 0 & 0 & \sin^2 \gamma \end{bmatrix}$ and $B^{-1} = \begin{bmatrix} \cos^2 \alpha & 0 & 0 \\ 0 & \cos^2 \beta & 0 \\ 0 & 0 & \cos^2 \gamma \end{bmatrix}$ where α , β , γ are any real numbers and $C = (A^{-5} + B^{-5}) + 5A^{-1}B^{-1}(A^{-3} + B^{-3}) + 10A^{-2}B^{-2}(A^{-1} + B^{-1})$ then find $|C|$.

5. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
; then $A^{-1} = \begin{bmatrix} 4 & 4 & 4 \\ 3 & 4 & 4 \\ 0 & 1 & 1 \end{bmatrix}$

(c)
$$A^3$$

(a) A (b) A (c) In (d) A (e) A (d) A (e) A (e) A (find the maximum possible value of
$$\det(M)$$
.

(b) 4 (c) 5 (d) 6

7. Let matrix $A = \begin{bmatrix} x & 3 & 2 \\ 1 & y & 4 \\ 2 & 2 & z \end{bmatrix}$; if $xyz = 2\lambda$ and $8x + 4y + 3z = \lambda + 28$, then (adj A) A equals:

(a)
$$\begin{bmatrix} \lambda + 1 & 0 & 0 \\ 0 & \lambda + 1 & 0 \\ 0 & 0 & \lambda + 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

(c)
$$\begin{bmatrix} \lambda^2 & 0 & 0 \\ 0 & \lambda^2 & 0 \\ 0 & 0 & \lambda^2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} \lambda + 2 & 0 & 0 \\ 0 & \lambda + 2 & 0 \\ 0 & 0 & \lambda + 2 \end{bmatrix}$$

8. If the trace of matrix $A = \begin{pmatrix} x-2 & e^x & -\sin x \\ \cos x^2 & x^2-x+3 & \ln|x| \\ 0 & \tan^{-1} x & x-7 \end{pmatrix}$ is zero, then x is equal to :

(a)
$$-2 \text{ or } 3$$

(b)
$$-3 \text{ or } -2$$

9. If $A = [a_{ij}]_{2\times 2}$ where $a_{ij} = \begin{cases} i+j, & i \neq j \\ i^2 - 2j, & i = j \end{cases}$ then A^{-1} is equal to :

(a)
$$\frac{1}{9} \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$$

(b)
$$\frac{1}{9}\begin{bmatrix} 0 & -3 \\ 3 & -1 \end{bmatrix}$$

(a)
$$\frac{1}{9}\begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$$
 (b) $\frac{1}{9}\begin{bmatrix} 0 & -3 \\ 3 & -1 \end{bmatrix}$ (c) $\frac{1}{9}\begin{bmatrix} 0 & -3 \\ -3 & -1 \end{bmatrix}$ (d) $\frac{1}{3}\begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$

(d)
$$\frac{1}{3} \begin{bmatrix} 0 & 3 \\ 3 & 1 \end{bmatrix}$$

10. If $\begin{bmatrix} 1 & -\tan\theta \\ \tan\theta & 1 \end{bmatrix} \begin{bmatrix} 1 & \tan\theta \\ -\tan\theta & 1 \end{bmatrix}^{-1} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}$, then:

(a)
$$a = b = 1$$

(b)
$$a = \cos 2\theta$$
, $b = \sin 2\theta$

(c)
$$a = \sin 2\theta$$
, $b = \cos 2\theta$

(d)
$$a = 1, b = \sin 2\theta$$

11. A square matrix P satisfies $P^2 = I - P$, where I is identity matrix. If $P^n = 5I - 8P$, then n is:

12. Let matrix $A = \begin{bmatrix} x & y & -z \\ 1 & 2 & 3 \\ 1 & 1 & 2 \end{bmatrix}$ where $x, y, z \in N$. If det. (adj. (adj. A)) = $2^8 \cdot 3^4$ then the number

of such matrices A is:

[Note: adj. A denotes adjoint of square matrix A.]

13. If A is a 2×2 non singular matrix, then adj (adj A) is equal to:

(c)
$$A^{-1}$$

(d)
$$(A^{-1})^2$$

14. $A = \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$ and $MA = A^{2m}$, $m \in \mathbb{N}$, $a, b \in \mathbb{R}$, for some matrix M, then which one of the following is correct

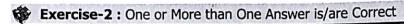
(a)
$$M = \begin{bmatrix} a^{2m} & b^{2m} \\ b^{2m} & -a^{2m} \end{bmatrix}$$

(b)
$$M = (a^2 + b^2)^m \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(c)
$$M = (a^m + b^m) \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

(d)
$$M = (a^2 + b^2)^{m-1} \begin{bmatrix} a & b \\ b & -a \end{bmatrix}$$

Matri	ces														List				219
												he inv							
	(a)	A-2i	_	_	(t) A	+ 3 <i>I</i>	_		(c)	A –	31		(d) n	ion-ex	kiste	nt	
16.	Let A	$1 = \begin{bmatrix} 3 \\ 7 \end{bmatrix}$	-5 -12	an an	d B	$=\begin{bmatrix} 12\\7 \end{bmatrix}$	-5 -3	be t	wo g	iven 1	natri	3 <i>I</i> ces, th	en (AB) ⁻¹	is:				
		_	-								L	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$		(d) [$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$			
17.	If ma	trix A	$\Lambda = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$	$\begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix}$	the	n the	valu	e of	adj.	A ed	quals	to:							
	(a)	2			(1) 3				(c)	4			(d) 6	,			
		the n	natri	x A =	cos sin	θ 2 θ c	sin θ os θ	A^{-1}	1 = A	A ^T th	en nu	ımber	of po	ossible	e val	ue(s)	of θ	in [0,	, 2π]
	is:																		
	(a)				•	o) 3				(c)		_			d) 4				
19.	Let A	1 be	a col	umn	vecto	or (no	ot nu	ll vec	tor)	and A	$=\frac{M}{M}$	$\frac{M^T}{T_M}$ th	ie m	atrix .	A is	:			
	(who	ere M	T is t	trans	ose	matr	ix of	M)											
	(a)	idem	potai	nt	(b) n	ilpote	ent		(c)	invo	olutary	7	(0	d) n	one o	of th	ese	
20.	If A	$=\begin{pmatrix}1\\0\end{pmatrix}$	2 1),	$P = \left(\cdot \right)$	cos (- sin	e si θ co	$\begin{pmatrix} n \theta \\ s \theta \end{pmatrix}$	Q = 1	P^TA	P, find	PQ ²	⁰¹⁴ P ^T	:						
	(a)	$\begin{pmatrix} 1 & 2 \\ 0 & \end{pmatrix}$	2 ²⁰¹⁴							(b)	$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$	4028							
	(c)	(P^T)	2013	4 ²⁰¹⁴	P^{201}	3				(d)	$P^{T}A$	4 ²⁰¹⁴ F)						
21.	If M	be a	squai	re ma	trix	of ord	ler 3	such	that	<i>M</i> =	2, th	en ad	$lj\left(\frac{M}{2}\right)$	equ	uals	to:			
		1			82	. 1					1	'	`-	71		1			
	(a)	2			(b) = 4				(c)	8			(d) -	16			
												hen th							
	(whe	ere A	den	otes	dete	rmina	ant o	f mat	rix A	$A.A^T$	deno	tes tra	nspo	ose of	mat	rix A,	A^{-1}	den	otes
	inve	se of	matı	ix A.	adj /	4 den	otes	adjoi	nt of	matr	ix A)								
	(a)					b) 1				2.2	25			(d) -	$\frac{1}{25}$			
1								A	ns	wer	s								1
			4	9	(b)	4	(b)	5.	(c)	6	(b)	7.	(b)	9	(c)	0	(0)	10	a
1.	(c)	2.	(b)	3.	3-130												(a)	Share!	
11.	(c)	12.	(c)	13.	(b)	14.	(d)	15.	(b)	16.	(b)	17.	(a)	18.	(p)	19.	(a)	20.	(b)



- **1.** If A and B are two orthogonal matrices of order n and det(A) + det(B) = 0, then which of the following must be correct?
 - (a) $\det(A + B) = \det(A) + \det(B)$
- (b) $\det(A + B) = 0$
- (c) A and B both are singular matrices
- (d) A + B = 0
- **2.** Let M be a 3×3 matrix satisfying $M^3 = 0$. Then which of the following statement(s) are true:

(a)
$$\left| \frac{1}{2}M^2 + M + I \right| \neq 0$$

(b)
$$\left| \frac{1}{2}M^2 - M + I \right| = 0$$

(c)
$$\left| \frac{1}{2}M^2 + M + I \right| = 0$$

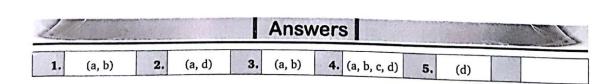
(d)
$$\left| \frac{1}{2} M^2 - M + I \right| \neq 0$$

- 3. Let $A_{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$, then :
 - (a) $A_{\alpha+\beta} = A_{\alpha}A_{\beta}$

(b) $A_{\alpha}^{-1} = A_{-\alpha}$ (d) $A_{\alpha}^{2} = -I$

(c) $A_{\alpha}^{-1} = -A_{\alpha}$

- **4.** $A^3 2A^2 A + 2I = 0$ if A =
- (b) 2I
- (c) $\begin{bmatrix} 2 & -1 & 2 \\ -1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (d) $\begin{bmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$
- **5.** Let A be a 3×3 symmetric invertible matrix with real positive elements. Then the number of zero elements in A^{-1} are less than or equal to:
 - (a) 0
- (b) 1
- (c) 2
- (d) 3



Matrices 221

Exercise-3: Matching Type Problems

1. Consider a square matrix *A* of order 2 which has its elements as 0, 1, 2 and 4. Let *N* denotes the number of such matrices.

	Column-I		Column-II
(A)	Possible non-negative value of det(A) is	(P)	2
(B)	Sum of values of determinants corresponding to N matrices is	(Q)	4
(C)	If absolute value of $(\det(A))$ is least, then possible value of $ \operatorname{adj}(\operatorname{adj}(A)) $	(R)	-2
(D)	If $\det(A)$ is least, then possible value of $\det(4A^{-1})$ is	(S)	0
		(T)	8

2.

	Column-I		Column-II
(A)	If A is an idempotent matrix and I is an identify matrix of the same order, then the value of n , such that	(P)	9
	$(A+I)^n = I + 127A \text{ is}$		
(B)	If $(I - A)^{-1} = I + A + A^2 + \dots A^7$, then $A^n = O$	(Q)	10
	where n is		
(C)	If A is matrix such that $a_{ij} = (i + j)(i - j)$, then A is singular if order of matrix is	(R)	7
(D)	If a non-singular matrix A is symmetric, such that A^{-1} is also symmetric, then order of A can be	(S)	8

3.

1	Column-l		Column-II
(A)	Number of ordered pairs (x, y) of real numbers satisfying $\sin x + \cos y = 0$, $\sin^2 x + \cos^2 y = \frac{1}{2}$,	(P)	0
(B)	$0 < x < \pi$ and $0 < y < \pi$, is equal to Given \mathbf{a} , \mathbf{b} and \mathbf{c} are three vectors such that \mathbf{b} and \mathbf{c} are unit like vectors and $ \mathbf{a} = 4$. If $\mathbf{a} + \lambda \mathbf{c} = 2\mathbf{b}$ then the sum of all possible values of λ is equal to	(Q)	2

Advanced Problems in Mathematics for JEE

(C)	If $P = \begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$, $10Q = \begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & t \\ 1 & -2 & 3 \end{bmatrix}$ and	(R)	4
(D)	$Q = P^{-1}$, then the value of t is equal to If $y = \tan u$ where $u = v - \frac{1}{v}$ and $v = \ln x$, then the	(S)	5
	value of $\frac{dy}{dx}$ at $x = e$ is equal to λ then $[\lambda]$ is equal to (where $[\cdot]$ denotes greatest integer function)		15.

4.

222

	Column-l		Column-II
(A)	If <i>P</i> and <i>Q</i> are variable points on $C_1: x^2 + y^2 = 4$ and $C_2: x^2 + y^2 - 8x - 6y + 24 = 0$ respectively then the maximum value of <i>PQ</i> , is equal to		1
(B)	Let P , Q , R be invertible matrices of second order such that $A = PQ^{-1}$, $B = QR^{-1}$, $C = RP^{-1}$, then the value of det. ($ABC + BCA + CAB$) is equal to		2
(C)	The perpendicular distance of the point whose position vector is $(1, 3, 5)$ from the line $\vec{\mathbf{r}} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}} + \lambda(\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ is equal to	(R)	9
(D)	Let $f(x)$ be a continuous function in $[-1,1]$ such that $f(x) = \begin{cases} \frac{\ln(px^2 + qx + r)}{x^2} & ; & -1 \le x < 0 \\ 1 & ; & x = 0 \\ \frac{\sin(e^{x^2} - 1)}{x^2} & ; & 0 < x \le 1 \end{cases}$	(S)	8
	then the value of $(p+q+r)$, is equal to		

5.

	Column-l	Column-II
(A)	$\lim_{n \to \infty} \frac{1}{\sqrt{n}} \left(1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \right) \text{ has the value equal to} $ (P)	1

Matrices 223

(B)	Let $A = [a_{ij}]$ be a 3×3 matrix where $a_{ij} = \begin{bmatrix} 2\cos t \; ; & \text{if } i = j \\ 1 \; ; & \text{if } i - j = 1 \\ 0 \; ; & \text{otherwise} \end{bmatrix}$	(Q)	2	
(C)	then maximum value of det(A) is Let $f(x) = x^3 + px^2 + qx + 6$; where $p, q \in R$ and $f'(x) < 0$ in largest possible interval $\left(-\frac{5}{3}, -1\right)$ then value of $q - p$ is		3	
(D)	If $4^x - 2^{x+2} + 5 + b-1 - 3 = \sin y $; $x, y, b \in R$ then the sum of the possible values of b is λ then $(\lambda + 1)$ equals	(S)	4	

Answers

- 1. $A \rightarrow P$, Q, T; $B \rightarrow S$; $C \rightarrow P$, R; $D \rightarrow R$
- 2. $A \rightarrow R; B \rightarrow P, Q, S; C \rightarrow P, R; D \rightarrow P, Q, R, S$
- 3. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$
- 4. $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$
- 5. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$

224

Exercise-4: Subjective Type Problems

- **1.** A and B are two square matrices. Such that $A^2B = BA$ and if $(AB)^{10} = A^k \cdot B^{10}$. Find the value of k = 1020
- **2.** Let A_n and B_n be square matrices of order 3, which are defined as :

$$A_n = [a_{ij}] \text{ and } B_n = [b_{ij}] \text{ where } a_{ij} = \frac{2i+j}{3^{2n}} \text{ and } b_{ij} = \frac{3i-j}{2^{2n}} \text{ for all } i \text{ and } j, 1 \le i, \ j \le 3$$
 .

If
$$l = \lim_{n \to \infty} \text{Tr.} (3A_1 + 3^2A_2 + 3^3A_3 + \dots + 3^nA_n)$$
 and

$$m = \lim_{n \to \infty} \text{Tr. } (2B_1 + 2^2B_2 + 2^3B_3 + \dots + 2^nB_n)$$
, then find the value of $\frac{(l+m)}{3}$

[Note: Tr. (P) denotes the trace of matrix P.]

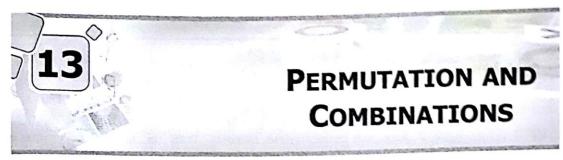
- **3.** Let A be a 2×3 matrix whereas B be a 3×2 matrix. If det. (AB) = 4, then the value of det. (BA), is:
- **4.** Find the maximum value of the determinant of an arbitrary 3×3 matrix A, each of whose entries $a_{ij} \in \{-1, 1\}$.
- 5. The set of natural numbers is divided into array of rows and columns in the form of matrices as

$$A_1 = [1], A_2 = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}, A_3 = \begin{bmatrix} 6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 13 & 14 \end{bmatrix}$$
 and so on. Let the trace of A_{10} be λ . Find unit digit of

λ?

	1					Ansv	vers			
1.	3	2.	7	3.	0	4.	4	5.	5	

Chapter 13 - Permutation and Combination



4	Exercise	e-1 : Single Cho	ice Problems			1:5	
1	. The num	ber of 3-digit num	bers containing th	e dig	it 7 exactly or	ice:	
	(a) 225		220		200		180
2	Let $A = \{f : A \rightarrow A\}$	x_1, x_2, x_3, x_4, x_5 B that are onto an	x_6, x_6, x_7, x_8 , $B = $ d there are exactly	{y ₁ , thre	y_2, y_3, y_4 }. e elements x i	n A such	number of function that $f(x) = y_1$ is:
	(a) 110		10920		13608	(d)	None of these
3		ber of arrangeme		TOIC	S" such that v	owels are	at the places which
	(a) 36	(- <i>)</i>	72		24		. 108
4	 Consider the numl 	all the 5 digit num per of numbers, w	bers where each of hich contain all the	the o	ligits is choser r digits is :	from the	set {1, 2, 3, 4}. Then
	(a) 240		244		586		781
5		ny ways are there ical order?	to arrange the let	ters	of the word "	GARDEN'	' with the vowels in
	(a) 120	(ъ)			360		240
6	. If α ≠ βb	$ut \alpha^2 = 5\alpha - 3an\alpha$	$1 \beta^2 = 5\beta - 3 $ then the	ie eq	uation having	α/βandβ	$3/\alpha$ as its roots is :
		-19x + 3 = 0			$3x^2 + 19x - 3$		
		-19x-3=0		(d)	$x^2 - 5x + 3 =$	= 0	
7	Adom	t ic to answer 10	out of 13 questions uestions. The num	s in a	n examination of choices avai	n such tha lable to h	at he must choose at im is :
	(a) 140	(b)	196	(c)	280	(d)	346
8	Let set A	= {1, 2, 3,, 22	}. Set B is a subset	of A	and B has exa	ctly 11 ele	ements, find the sum
·	of elemen	nts of all possible	subsets B.				
	(a) 252	²¹ C ₁₁		(b)	230 ²¹ C ₁₀		

(c) 253 ²¹C₉

(d) $253^{21}C_{10}$

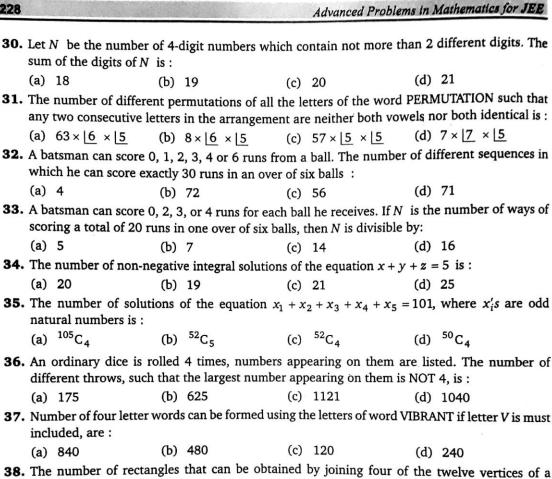
226

Advanced Problems in Mathematics for JEE

9	. The	value of	2009! + 2008! +	200	6! 7!]=	*								
	([·]	denotes gr	eatest in	tege	r function.)									
	(a)	2009		(b)	2008		(c)	2007			(d)			
10	. If	$p_1, p_2, p_3,$, p _r	n +1	are distinc	t prime	e nu	ımbers.	Then	the	nu	mber	of fact	tors of
	$p_1^{\prime\prime}I$	$p_2 p_3 \cdot \cdot \cdot \cdot I$	p_{m+1} is:											
*	(a)	m(n+1)		(b)	$(n+1)2^m$		(c)	$n \cdot 2^{m}$			(d)	2^{nm}		
11.	АЪ	asket ball	team co	nsist	s of 12 pair	rs of tw	in b	rothers.	On the	e firs	t da	y of tr	aining,	, all 24
	play	yers stand	in a circle	e in s	such a way t	that all r	oairs	of twin	brothe	rs ar	e ne	ighbou	rs. Nur	nber of
	way	s this can	be done	is :										
	(a)	$(12)! 2^{11}$		(b)	$(11)! 2^{12}$		(c)	(12)!2	12		(d)	(11)!:	211	
12.	Let	'm' denote	s the nur		of four digi					mos	st dig	git is od	d, the	second
	digi	it is even a	nd all fo	ur di	igits are diff	ferent a	nd 'n	' denote	es the n	umb	er o	f four o	ligit nı	ımbers
	suc	h that left	most dig	it is	even, secon	d digit i	is od	d and al	ll four o	ligits	are	differe	ent. If i	n=nk,
		n k equals			_			_						
	(a)	4 -		(b)	$\frac{3}{4}$		(c)	5			(d)	4		
10		3			7			т.	hak			3		
13.			ir three d		numbers of	the fori			nat x <				Ž.	
	(8	156		12 520	204	stan ba	0.0	240	TEAL		` '	276		then D
14.					neir intersed ements of <i>A</i>				. и А п	as I	920	more s	ubsets	tnan B
	(a)			(b)			(c)				(d)			
15.	All 1	possible 12	20 permu	itatio	ons of WDS	MC are	arra	nged in	diction	ary	orde	r, as if	each v	vere an
	ordi	nary five-l	etter wo		he last lette				in the l	list, i	s:			
	(a)			(b)		*1					(d)			
16.	The	number o	f permut	atio	n of all the	letters A	AAAA	BBBC in	n which	n the	A's	appear	togeth	ner in a
			ers or the		appear tog	etner in	2.0		letters	is:				
	(a)	44		(b)	50		(c)	60			(d)	89		
17.	Nun	ber of zer	o's at the	e end	is of $\prod_{i=1}^{30} (n_i)$	<i>n</i> +1 is:								
-/-					n=5									
	(a)	111		(b)	147		(c)	137			(4)	None	of the	60
18.			f positive	inte	gral pairs ((x, y) sa	tisfy	ing the	equation	on v	2_,	,2 _ 2	270:-	SC .
	(a)			(b)			(c)		quatr	on x			3/UIS:	
10						ings ou			· ~ - C	, , ,	(d)	4		
19.	alike	and 'n' ar	re of seco	ona I	ecting 'n' th	ike and	the	rest unl	ike is:	vnic	n 'n	are of	one ki	ind and
	(a)	$n 2^{n-1}$		(b)	$(n-1)2^{n-1}$		(c)	(n + 1)	2^{n-1}		(d)	(n+2)	$(2)2^{n-1}$	
												ass × 3	18/07/6/7	

Pern	nutat	ion and Co	mbinations						A TOTAL					227
20.	If x,	y, z are ti ered triple	hree natural (x, y, z) is	number	s in A	.P. suc	h tha	t <i>x</i> +	y + 2	z = 30, th	en th	e possil	ble nui	mber of
	(a)	18) 19			(c)	20			(d)	21		
21.	A di	ice is rolled	d 4 times, the		rs apr	earin	g are	liste	d. Th	e numbe			t throv	vs, such
	ша	tile large	st number a	pearing	g in th	e list	is no	t 4, i	is : :					•
	(a)	175	(b)	625			(c)	10	40			1121		
22.	Let	m denote	es the numb	er of w	ays in	which	ch 5	boys	and	5 girls c	an b	e arran	iged ir	a line
	ane	matery an	id n denotes	the nun	nber o	f way	s in v	vhic	h 5 bo	ovs and 5	girls	an be	arrang	ged in a
	(a)	2	no two boys	_		1f m =			the va	alue of k		10		
23.			ays in which				(c)		. .	11	(d)			ar chair
	bety	ween any	two students	is:	ients (can si	t in ,	/ Cna	air in	a row, II	Hier	e 15 11C	empi	ly Chair
		24		28			(c)	72			(d)	96		
24.	Nur	nber of ze	ro's at the e	_	$\prod_{n=5}^{30} (n)$	ⁿ⁺¹ is	8 8	. –			,			
	(a)	111	(b) 147	= 3		(c)	13	7		(4)	None		
25.			of words of f		ers cor	nsistir				nher of vo			าทรดทะ	ants (of
	eng	lish langu	age) with re	petition	perm	itted	is:	cque		inder or ve	J 11 CIL	dira co	31150110	anto (or
	(a)	51030	(b	50030	0		(c)	630	050		(d)	66150)	
26.			letters of ar Then the n											h these
	(a)	30240	(Ъ	69760	0		(c)	69	780		(d)	99784	1	
27.	Nun	nber of fo	ur digit num		which	at lea	ast or	ie di	git oc	curs mor	e tha	n once	, is:	
		4464		4644			3.5	44				6444		
28.	leas squa	t one verte ares are	minesweepe ex with that undetermine on blank sq	square. ed. In l	A squ	are w	ith a	num	ber m	ay not ha	ave a	mine,	and th	e blank
								-		-				
					2		1		2					
		120		105				95				100		
29.			t of all the d	ivisors o	f 1440	0 be <i>P</i>	. If <i>P</i>	is di	ivisibl	le by 24 ^x ,	then	the ma	aximu	m value
	of x	is:	: (re2000								ng nasir			
	(a)	28	(b)	30			(c)	32		3	(d)	36		

228



•				
38. The number of	f rectangles that car	n be obtained by joining	four of the twelve	vertices of
12-sided regul	ar polygon is :			
(a) 66	(b) 30	(c) 24	(d) 15	

39. Number of five digit integers, with sum of the digits equal to 43 are : (b) 10 (c) 15 (a) 5 (d) 35

Z	1			Answers																	
1.		2.				00330000		HERRICE SEL	(c)		(a)			8.							
11.	(b)	12.	(c)	13.	(d)	14.	(c)	15.	(b)	16.	(a)	17.	(c)	18.	(a)	19.	(d)	20.	(b)		
21.	(d)	22.	(d)	23.	(d)	24.	(c)	25.	(d)	26.	(b)	27.	(a)	28.	(c)	29.	(b)	30.	(a)		
31.	(c)	32.	(d)	33.	(d)	34.	(c)	35.	(c)	36.	(c)	37.	(b)	38.	(d)	39.	(c)				

Exercise-2: One or More than One Answer is/are Correct

1. The number of 5 letter words formed with the letters of the word CALCULUS is divisible by :

2. The coefficient of x^{50} in the expansion of $\sum_{k=0}^{100} {}^{100}C_k(x-2)^{100-k}3^k$ is also equal to :

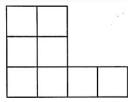
(a) Number of ways in which 50 identical books can be distributed in 100 students, if each student can get atmost one book.

(b) Number of ways in which 100 different white balls and 50 identical red balls can be arranged in a circle, if no two red balls are together.

(c) Number of dissimilar terms in $(x_1 + x_2 + x_3 + ... + x_{50})^{51}$.

2.6.10.14.....198

3. Number of ways in which the letters of the word "NATION" can be filled in the given figure such that no row remains empty and each box contains not more than one letter, are :



(a) 11 6

(b) 12 6

(c) 13 | 6

(d) 14|6

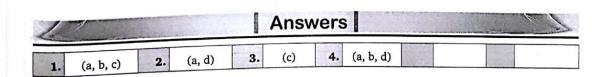
4. Let a, b, c, d be non zero distinct digits. The number of 4 digit numbers abcd such that ab + cd is even is divisible by:

(a) 3

(b) 4

(c) 7

(d) 11



230

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Consider all the six digit numbers that can be formed using the digits 1, 2, 3, 4, 5 and 6, each digit being used exactly once. Each of such six digit numbers have the property that for each digit, not more than two digits smaller than that digit appear to the right of that digit.

- 1. A six digit number which does not satisfy the property mentioned above, is:
 - (a) 315426
- (b) 135462
- (c) 234651
- (d) None of these
- 2. Number of such six digit numbers having the desired property is :
 - (a) 120
- (b) 144
- (c) 162
- (d) 210

10			An	swers		
1. (d)	2. (c)					

Exercise-4: Matching Type Problems

1. All letters of the word BREAKAGE are to be jumbled. The number of ways of arranging them so that:

	Column-I		Column-II
(A)	The two A's are not together	(P)	720
(B)	The two E's are together but not two A's	(Q)	1800
(C)	Neither two A's nor two E's are together	(R)	5760
(D)	No two vowels are together	(S)	6000
		(T)	7560

2. Consider the letters of the word MATHEMATICS. Set of repeating letters = { M, A, T}, set of non repeating letters = { H, E, I, C, S }:

	Column-I			Column-II	
(A)	The number of words taking all letters of the given word such that atleast one repeating letter is at odd position is	(P)	650 °	28 · (7!)	
(B)	The number of words formed taking all letters of the given word in which no two vowels are together is	(Q)	g 10 .	$\frac{(11)!}{(2!)^3}$	
(C)	The number of words formed taking all letters of the given word such that in each word both M's are together and both T's are together but both A's are not together is			210(7!)	
(D)	The number of words formed taking all letters of the given word such that relative order of vowels and consonants does not change is	(S)		840 (7!)	
		(T)		$\frac{4!7!}{(2!)^3}$	-

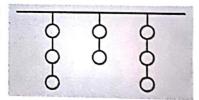
Answers

1. $A \rightarrow T$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow P$

2. $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow T$

Exercise-5: Subjective Type Problems

- **1.** The number of ways in which eight digit number can be formed using the digits from 1 to 9 without repetition if first four places of the numbers are in increasing order and last four places are in decreasing order is N, then find the value of $\frac{N}{70}$.
- **2.** Number of ways in which the letters of the word DECISIONS be arranged so that letter N be somewhere to the right of the letter "D" is $\frac{9}{\lambda}$. Find λ .
- **4.** There are 10 stations enroute. A train has to be stopped at 3 of them. Let N be the ways in which the train can be stopped if at least two of the stopping stations are consecutive. Find the value of \sqrt{N} .
- **5.** There are 10 girls and 8 boys in a class room including Mr. Ravi, Ms. Rani and Ms. Radha. A list of speakers consisting of 8 girls and 6 boys has to be prepared. Mr. Ravi refuses to speak if Ms. Rani is a speaker. Ms. Rani refuses to speak if Ms. Radha is a speaker. The number of ways the list can be prepared is a 3 digit number $n_1 n_2 n_3$, then $|n_3 + n_2 n_1| =$
- **6.** Nine people sit around a round table. The number of ways of selecting four of them such that they are not from adjacent seats, is
- 7. Let the number of arrangements of all the digits of the numbers 12345 such that atleast 3 digits will not come in it's original position is *N*. Then the unit digit of *N* is
- **8.** The number of triangles with each side having integral length and the longest side is of 11 units is equal to k^2 , then the value of 'k' is equal to
- **9.** 8 clay targets are arranged as shown. If *N* be the number of different ways they can be shot (one at a time) if no target can be shot until the target(s) below it have been shot. Find the ten's digit of *N*.



- **10.** There are n persons sitting around a circular table. They start singing a 2 minute song in pairs such that no two persons sitting together will sing together. This process is continued for 28 minutes. Find n.
- **11.** The number of ways to choose 7 distinct natural numbers from the first 100 natural numbers such that any two chosen numbers differ at least by 7 can be expressed as ${}^{n}C_{7}$. Find the number of divisors of n.
- **12.** Four couples (husband and wife) decide to form a committee of four members. The number of different committees that can be formed in which no couple finds a place is λ , then the sum of digits of λ is :

Permutation and Combinations

233

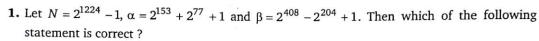
- **13.** The number of ways in which 2n objects of one type, 2n of another type and 2n of a third type can be divided between 2 persons so that each may have 3n objects is $\alpha n^2 + \beta n + \gamma$. Find the value of $(\alpha + \beta + \gamma)$.
- **14.** Let N be the number of integral solution of the equation x + y + z + w = 15 where $x \ge 0$, y > 5, $z \ge 2$ and $w \ge 1$. Find the unit digit of N.

1	de la companya dela companya dela companya dela companya de la com					Ansv	vers						1
1.	9	2.	8	3.	8	4.	8	5.	5	6.	9	7.	9
8.	6	9.	6	10.	7	11.	7	12.	7	13.	7	14.	4

Chapter 14 - Binomial Theorem

BIONMIAL THEOREM

Exercise-1: Single Choice Problems



- (a) α divides N but β does not
- (b) β divides N but α does not
- (c) α and β both divide N
- (d) neither α nor β divides N

2. If
$$(1+x+x^2)^n = \sum_{r=0}^{2n} a_r x^r$$
, then $a_r - {}^n C_1 \cdot a_{r-1} + {}^n C_2 a_{r-2} - {}^n C_3 a_{r-3} + \dots + (-1)^r {}^n C_r a_0$ is

equal to: (r is not multiple of 3)

- (a) 0
- (b) ${}^{n}C_{r}$
- (c) a_r
- (d) 1

3. The coefficient of the middle term in the binomial expansion in powers of x of $(1 + \alpha x)^4$ and of $(1 - \alpha x)^6$ is the same if α equals:

- (a) $-\frac{5}{3}$
- (b) $\frac{3}{5}$
- (c) $\frac{-3}{10}$
- (d) $\frac{10}{3}$

4. If $(1+x)^{2010} = C_0 + C_1 x + C_2 x^2 + \dots + C_{2010} x^{2010}$ then the sum of series $C_2 + C_5 + C_8 + \dots + C_{2009}$ equals to:

(a) $\frac{1}{2}(2^{2010}-1)$

(b) $\frac{1}{3}(2^{2010}-1)$

(c) $\frac{1}{2}(2^{2009}-1)$

(d) $\frac{1}{3}(2^{2009}-1)$

5. Let $\alpha_n = (2 + \sqrt{3})^n$. Find $\lim_{n \to \infty} (\alpha_n - [\alpha_n])$ ([·] denotes greatest integer function)

- (a) 1
- (b) $\frac{1}{2}$
- (c) $\frac{1}{3}$
- (d) $\frac{2}{3}$

6. The number $N = {}^{20}C_7 - {}^{20}C_8 + {}^{20}C_9 - {}^{20}C_{10} + \dots - {}^{20}C_{20}$ is not divisible by :

- (a) 3
- (b) 7
- (c) 1:
- (d) 19

Binomial Theorem 235

7.	The value of the expression \log_2	$\left(1+\frac{1}{2}\sum_{k=1}^{11}{}^{12}C_{k}\right)$	
----	--------------------------------------	---	--

(a) 11

(d) 14

8. The constant term in the expansion of $\left(x + \frac{1}{x^3}\right)^{12}$ is:

9. If $\frac{3}{4!} + \frac{4}{5!} + \frac{5}{6!} + \dots + 50$ term $= \frac{1}{3!} - \frac{1}{(k+3)!}$, then sum of coefficients in the expansion $(1+2x_1+3x_2+\ldots+100x_{100})^k$ is:

(where $x_1, x_2, x_3, \ldots, x_{100}$ are independent variables)

(a) (5050)⁴⁹

(b) $(5050)^{51}$

(c) (5050)⁵²

(d) (5050)⁵⁰

10. Statement-1: The remainder when $(128)^{(128)^{128}}$ is divided by 7 is 3.

because

Statement-2: (128)¹²⁸ when divided by 3 leaves the remainder 1.

- (a) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (b) Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1.
- (c) Statement-1 is true, statement-2 is false.
- (d) Statement-1 is false, statement-2 is true.

11. If n > 3, then $xyz^nC_0 - (x-1)(y-1)(z-1)^nC_1 + (x-2)(y-2)(z-2)^nC_2 (x-3)(y-3)(z-3)^{n}C_3 + \dots + (-1)^{n}(x-n)(y-n)(z-n)^{n}C_n$ equals:

(a) xyz

(b) x + y + z

(c) xy + yz + zx

12. If $\alpha_1, \alpha_2, \ldots, \alpha_n$ are the n; n^{th} roots of unity, $\alpha_r = e^{\frac{i2(r-1)\pi}{n}}$, $r = 1, 2, \ldots, n$ then ${}^{n}C_{1}\alpha_{1} + {}^{n}C_{2}\alpha_{2} + \dots + {}^{n}C_{n}\alpha_{n}$ is equal to:

(a)
$$\left(1+\frac{\alpha_2}{\alpha_2}\right)^n-1$$

(a) $\left(1 + \frac{\alpha_2}{\alpha_1}\right)^n - 1$ (b) $\frac{\alpha_1}{2} [(1 + \alpha_1)^n - 1]$ (c) $\frac{\alpha_1 + \alpha_{n-1} - 1}{2}$ (d) $(\alpha_1 + \alpha_{n-1})^n - 1$

13. The remainder when $2^{30} \cdot 3^{20}$ is divided by 7 is :

(d) 6

(a) 1 (b) 2 (c) 14. $^{26}C_0 + ^{26}C_1 + ^{26}C_2 + \dots + ^{26}C_{13}$ is equal to :

(a) $2^{25} - \frac{1}{2} \cdot {}^{26}C_{13}$ (b) $2^{25} + \frac{1}{2} \cdot {}^{26}C_{13}$ (c) 2^{13}

(d) $2^{26} + \frac{1}{2} \cdot {}^{26}C_{13}$

236

15.	If a_r	is the	coefficient	of x^r	in the	expansion	of (1 + x +	$-x^2)^n$ (n	∈ N).	Then	the	value	of
			$7a_7 + 10a_{10}$										

(c) $\frac{1}{3} \cdot 2^n$

(d) $n \cdot 3^{n-1}$

16. Let $\binom{n}{k}$ represents the combination of 'n' things taken 'k' at a time, then the value of the sum

17. The last digit of 9! + 3⁹⁹⁶⁶ is:

18. Let x be the 7 th term from the beginning and y be the 7 th term from the end in the expansion of $\left(3^{1/3} + \frac{1}{4^{1/3}}\right)^n$. If y = 12x then the value of n is:

(a) 9 (b) 8 (c) 10 (d) 11 **19.** The expression $\binom{10}{0}^2 - \binom{10}{0}^2 - \binom{10}{0}^2 + \binom{10}{0}^2 - \binom{10}{0}^2 - \binom{10}{0}^2 - \binom{10}{0}^2 + \binom{10}{0}^2 = \binom{10}{0$

20. The ratio of the co-efficients to x^{15} to the term independent of x in the expansion of $\left(x^2 + \frac{2}{x}\right)^{15}$

is:

(b) 1:32

21. In the expansion of $(1+x)^2(1+y)^3(1+z)^4(1+w)^5$, the sum of the coefficient of the terms of degree 12 is:

(d) 91

22. If
$$\sum_{r=0}^{n} \left(\frac{r^3 + 2r^2 + 3r + 2}{(r+1)^2} \right) {}^{n}C_{r} = \frac{2^4 + 2^3 + 2^2 - 2}{3}$$

then the value of n is:

(a) 2

(b) 2^2

(c) 2^3

(d) 2^4

Answers 3. (c) 4. (b) 5. (a) 6. (c) (c) 2. (a) 1. (a) (d) (d) 10. (d) 14. (b) **15.** (d) 13. (b) 16. (d) 11. (d) 12. (a) 17. (d) 18. (a) 19. (c) 20. (b) 22. 21.

Exercise-2: One or More than One Answer is/are Correct

1. The number $N = {}^{20}C_7 - {}^{20}C_8 + {}^{20}C_9 - {}^{20}C_{10} + \dots - {}^{20}C_{20}$ is divisible by :

(a) 3 (b) 4 (c) 7 (d) 19 **2.** If $(1+x+x^2+x^3)^{100} = a_0 + a_1x + a_2x^2 + \dots + a_{300}x^{300}$ then which of the following statement(s) is/are correct?

(a) $a_1 = 100$

- (b) $a_0 + a_1 + a_2 + \dots + a_{300}$ is divisible by 1024
- (c) coefficients equidistant from beginning and end are equal
- (d) $a_0 + a_2 + a_4 + \dots + a_{300} = a_1 + a_3 + a_5 + \dots + a_{299}$
- **3.** $\sum_{r=0}^{4} (-1)^r {}^{16}C_r$ is divisible by :

(a) 5

(d) 13

4. The expansion of $\left(\sqrt{x} + \frac{1}{2\sqrt[4]{x}}\right)^n$ is arranged in decreasing powders of x. If coefficient of first

three terms form an A.P. then in expansion, the integral powers of x are :

5. Let $(1+x^2)^2(1+x)^n = \sum_{k=0}^{n+4} a_k x^k$. If a_1 , a_2 , a_3 are in AP, then n is (given that ${}^nC_r = 0$, if n < r):

6.
$$\sum_{i=0}^{n} \sum_{j=0}^{n} \sum_{k=0}^{n} {n \choose i} {n \choose j} {n \choose k}, {n \choose r} = {^{n}C_{r}}:$$

(a) is less than 500 if n = 3

(b) is greater than 600 if n = 3

(c) is less than 5000 if n = 4

(d) is greater than 4000 if n = 4

7. If ${}^{100}C_6 + 4$. ${}^{100}C_7 + 6$. ${}^{100}C_8 + 4$. ${}^{100}C_9 + {}^{100}C_{10}$ has the value equal to xC_y ; then the possible value(s) of x + y can be:

(a) 112

(b) 114

(c) 196

8. If the co-efficient of x^{2r} is greater than half of the co-efficient of x^{2r+1} in the expansion of $(1+x)^{15}$; then the possible value of 'r' equal to:

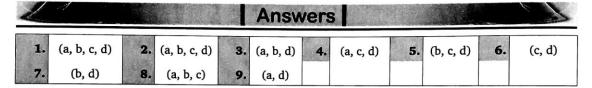
(a) 5 (b) 6 (c) 7 (d) **9.** Let $f(x) = 1 + x^{111} + x^{222} + x^{333} + x^{999}$ then f(x) is divisible by

(a) x+1

(c) x-1

(d) $1 + x^{222} + x^{444} + x^{666} + x^{888}$

Advanced Problems in Mathematics for JEE



Binomial Theorem

Exercise-3: Matching Type Problems

1.

	Column-I	1	Column-II
(A)	If $^{n-1}C_r = (k^2 - 3)^n C_{r+1}$ and $k \in \mathbb{R}^+$, then least value of $5[k]$ is (where [·] represents greatest integer function)	(P)	10
(B)	$\sum_{i=0}^{m} {}^{20}C_i {}^{40}C_{m-i}, \text{ where } {}^{n}C_r = 0 \text{ if } r > n, \text{ is maximum when } \frac{m}{5} \text{ is}$	(Q)	5
(C)	Number of non-negative integral solutions of inequation $x + y + z \le 4$ is	(R)	35 .
(D)	Let $A = \{1, 2, 3, 4, 5\}$, $f: A \rightarrow A$, The number of onto functions such that $f(x) = x$ for at least 3 distinct $x \in A$, is not a multiple of	(S)	6
		(T)	12

2.

1	Column-l		Column-II
(A)	Number of real solution of $(x^2 + 6x + 7)^2 + 6(x^2 + 6x + 7) + 7 = x$ is/are	(P)	15
(B)	If $P = \sum_{r=0}^{n} {}^{n}C_{r}$; $q = \sum_{r=0}^{m} {}^{m}C_{r}$ (15) r $(m, n \in N)$ and if	(Q)	5
	P = q and m , n are least then $m + n =$		
(C)	Remainder when 1 + 3 + 5 + + 2011! is divided by 56 is	(R)	3
(D)	Inequality $\left 1 - \frac{ x }{1 + x }\right \ge \frac{1}{2}$ holds for x , then	(S)	0
	number of integral values of 'x' is/are		

3. Match the following

Column-I		Column-II
(A) If the sum of first 84 terms of the series $\frac{4+\sqrt{3}}{1+\sqrt{3}} + \frac{8+\sqrt{15}}{\sqrt{3}+\sqrt{5}} + \frac{12+\sqrt{35}}{\sqrt{5}+\sqrt{7}} + \dots \text{ is 549k, then } k \text{ is equal to}$	(P)	3

Advanced Problems in Mathematics for JEE

2	A	r
4	4	ι

(B)	If $x, y \in R$, $x^2 + y^2 - 6x + 8y + 24 = 0$, the greatest value of $\frac{16}{5}\cos^2\left(\sqrt{x^2 + y^2}\right) - \frac{24}{5}\sin\left(\sqrt{x^2 + y^2}\right)$ is	(Q)	2
	If $(\sqrt{3}+1)^6 + (\sqrt{3}-1)^6 = 416$, if $xyz = [(\sqrt{3}+1)^6]$, $x,y,z \in \mathbb{N}$, (where [·] denotes the greatest integer function), then the number of ordered triplets (x,y,z) is	(R)	5
(D)	If $(1+x)(1+x^2)(1+x^4)(1+x^{128}) = \sum_{r=0}^{n} x^r$, then $\frac{n}{85}$ is equal to	(S)	9

Answers

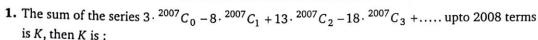
```
1. A \rightarrow Q; B \rightarrow S; C \rightarrow R; D \rightarrow P, Q, R, S, T
```

3.
$$A \rightarrow Q$$
; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$

^{2.} $A \rightarrow S$; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$

Binomial Theorem 241

Exercise-4: Subjective Type Problems



- **2.** In the polynomial function $f(x) = (x-1)(x^2-2)(x^3-3)....(x^{11}-11)$ the coefficient of x^{60} is:
- 3. If $\sum_{r=0}^{3n} a_r (x-4)^r = \sum_{r=0}^{3n} A_r (x-5)^r$ and $a_k = 1 \ \forall \ K \ge 2n$ and $\sum_{r=0}^{3n} d_r (x-8)^r = \sum_{r=0}^{3n} B_r (x-9)^r$ and $\sum_{r=0}^{3n} d_r (x-12)^r = \sum_{r=0}^{3n} D_r (x-13)^r$ and $d_K = 1 \ \forall \ K \ge 2n$. The find the value of $\frac{A_{2n} + D_{2n}}{B_{2n}}$.
- **4.** If $3^{101} 2^{100}$ is divided by 11, the remainder is
- **5.** Find the hundred's digit in the co-efficient of x^{17} in the expansion of $(1 + x^5 + x^7)^{20}$.
- **6.** Let $x = (3\sqrt{6} + 7)^{89}$. If $\{x\}$ denotes the fractional part of 'x' then find the remainder when $x\{x\} + (x\{x\})^2 + (x\{x\})^3$ is divided by 31.
- 7. Let $n \in N$; $S_n = \sum_{r=0}^{3n} (3^n C_r)$ and $T_n = \sum_{r=0}^n (3^n C_{3r})$. Find $|S_n 3T_n|$.
- **8.** Find the sum of possible real values of x for which the sixth term of $\left(3^{\log_3 \sqrt{9^{|x-2|}}} + 7^{\frac{1}{5}\log_7(3^{|x-2|-9})}\right)^7 \text{ equal 567}:$
- **9.** Let q be a positive integer with $q \le 50$. If the sum ${}^{98}C_{30} + 2$. ${}^{97}C_{30} + 3$. ${}^{96}C_{30} + \dots + 68$. ${}^{31}C_{30} + 69$. ${}^{30}C_{30} = {}^{100}C_q$ Find the sum of the digits of q.
- **10.** The remainder when $\left(\sum_{k=1}^{5} {}^{20}C_{2k-1}\right)^6$ is divided by 11, is :
- **11.** Let $a = 3^{\frac{1}{223}} + 1$ and for all $n \ge 3$, let $f(n) = {}^{n}C_{0} \cdot a^{n-1} {}^{n}C_{1} \cdot a^{n-2} + {}^{n}C_{2} \cdot a^{n-3} \dots + (-1)^{n-1} \cdot {}^{n}C_{n-1} \cdot a^{0}$. If the value of $f(2007) + f(2008) = 3^{7} k$ where $k \in N$ then find k
- **12.** In the polynomial $(x-1)(x^2-2)(x^3-3)...(x^{11}-11)$, the coefficient of x^{60} is:
- 13. Let the sum of all divisiors of the form $2^p \cdot 3^q$ (with p, q positive integers) of the number $19^{88} 1$ be λ . Find the unit digit of λ .

242 Advanced Problems in Mathematics for JEE

- **14.** Find the sum of possible real values of x for which the sixth term of $\left(3^{\log_3 \sqrt{9^{|x-2|}}} + 7^{\left(\frac{1}{5}\right)\log_7(3^{|x-2|-9})}\right)^7 \text{ equals 567.}$
- **15.** Let $1 + \sum_{r=1}^{10} (3^r \cdot {}^{10}C_r + r \cdot {}^{10}C_r) = 2^{10} (\alpha \cdot 4^5 + \beta)$ where $\alpha, \beta \in N$ and $f(x) = x^2 2x k^2 + 1$. If α, β lies between the roots of f(x) = 0. Then find the smallest positive integral value of k.
- **16.** Let $S_n = {}^n C_0 {}^n C_1 + {}^n C_1 {}^n C_2 + \dots + {}^n C_{n-1} {}^n C_n$ if $\frac{S_{n+1}}{S_n} = \frac{15}{4}$; find the sum of all possible values of $n \ (n \in N)$

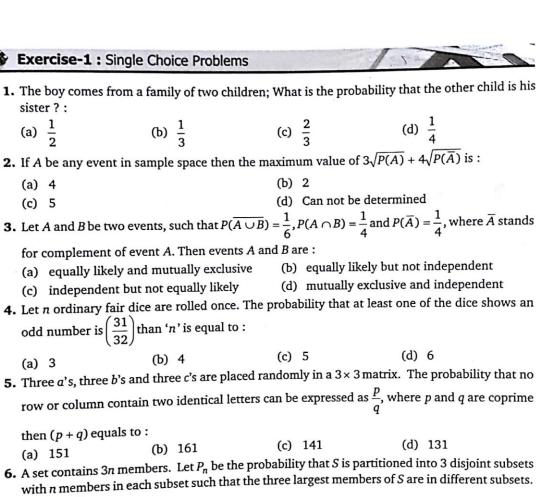
	1				1	Ansv	/ers						1
1.	0	2.	1	3.	2	4.	2	5.	4	6.	0	7	2
8.	4	9.	5	10.	3	11.	9	12.	(1)	13.	(4)	14.	2
15.	5	16.	6										(4)

Chapter 15 - Probability

Then $\lim P_n =$

(a) 2/7

(b) 1/7



(c) 1/9

(d) 2/9

44	Advanced Problems in Mathematics for JEE
7.	Three different numbers are selected at random from the set $A = \{1, 2, 3, \dots, 10\}$. Then the probability that the product of two numbers equal to the third number is $\frac{p}{q}$, where p and q are
	relatively prime positive integers then the value of $(p+q)$ is: (a) 39 (b) 40 (c) 41 (d) 42 Mr. A's T.V. has only 4 channels; all of them quite boring so he naturally desires to switch (change) channel after every one minute. The probability that he is back to his original channel for the first time after 4 minutes can be expressed as $\frac{m}{n}$; where m and n are relatively prime
	numbers. Then $(m+n)$ equals: (a) 27 (b) 31 (c) 23 (d) 33

9. Letters of the word TITANIC are arranged to form all the possible words. What is the probability that a word formed starts either with a T or a vowel?

10. A mapping is selected at random from all mappings $f: A \rightarrow A$ where set $A = \{1, 2, 3,, n\}$

If the probability that mapping is injective is $\frac{3}{32}$, then the value of *n* is :

(a) 3 (b) 4 (c) 8 (d) 16

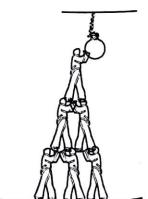
11. A 4 digit number is randomly picked from all the 4 digit numbers, then the probability that the product of its digit is divisible by 3 is:

(a) 125

(c) (d) None of these 12. To obtain a gold coin; 6 men, all of different weight, are trying to

build a human pyramid as shown in the figure. Human pyramid is called "stable" if some one not in the bottom row is "supported by" each of the two closest people beneath him and no body can be supported by anybody of lower weight. Formation of 'stable' pyramid is the only condition to get a gold coin. What is the probability that they will get gold coin?

13. From a pack of 52 playing cards; half of the cards are randomly removed without looking at them. From the remaining cards, 3 cards are drawn randomly. The probability that all are king.



Probability

245

(a) $\frac{1}{(25)(17)(13)}$

(b) $\frac{1}{(25)(15)(13)}$

(c) $\frac{1}{(52)(17)(13)}$

(d) $\frac{1}{(13)(51)(17)}$

14. A bag contains 10 white and 3 black balls. Balls are drawn one by one without replacement till all the black balls are drawn. The probability that the procedure of drawing balls will come to an end at the seventh draw is:

(a) $\frac{15}{286}$

(b) $\frac{105}{286}$

(c) $\frac{35}{286}$

(d) $\frac{7}{286}$

15. Let S be the set of all function from the set $\{1, 2, ..., 10\}$ to itself. One function is selected from S, the probability that the selected function is one-one onto is:

(a) $\frac{9!}{10^9}$

(b) $\frac{1}{10}$

(c) $\frac{100}{101}$

(d) $\frac{9!}{10^{10}}$

16. Two friends visit a restaurant randomly during 5 pm to 6 pm. Among the two, whoever comes first waits for 15 min and then leaves. The probability that they meet is:

(a) $\frac{1}{4}$

(b) $\frac{1}{16}$

(c) $\frac{7}{16}$

(d) $\frac{9}{1}$

17. Three numbers are randomly selected from the set {10,11,12,.....,100}. Probability that they form a Geometric progression with integral common ratio greater than 1 is:

(a) $\frac{15}{91}$ C₃

(b) $\frac{16}{91}C_3$

(c) $\frac{17}{91}$ C₃

(d) $\frac{18}{91}$ C₃

1								A	nsv	ver	S			and surveying					5
1.	(a)	2.	(c)	3.	(c)	4.	(c)	5.	(c)	6.	(d)	7.	(c)	8.	(b)	9.	(d)	10.	(b)
11.	(a)	12.	(a)	13.	(a)	14.	(a)	15.	(a)	16.	(c)	17.	(d)						

Exercise-2: One or More than One Answer is/are Correct

- **1.** A consignment of 15 record players contain 4 defectives. The record players are selected at random, one by one and examined. The one examined is not put back. Then:
 - (a) Probability of getting exactly 3 defectives in the examination of 8 record players is $\frac{{}^{4}C_{3}{}^{11}C_{5}}{{}^{15}C_{0}}.$
 - (b) Probability that 9^{th} one examined is the last defective is $\frac{8}{197}$.
 - (c) Probability that 9^{th} examined record player is defective, given that there are 3 defectives in first 8 players examined is $\frac{1}{7}$.
 - (d) Probability that 9^{th} one examined is the last defective is $\frac{8}{195}$.
- **2.** If A_1 , A_2 , A_3 ,....., A_{1006} be independent events such that $P(A_i) = \frac{1}{2i}$ ($i = 1, 2, 3, \ldots, 1006$) and probability that none of the events occurs be $\frac{\alpha!}{2^{\alpha}(\beta!)^2}$,

then:

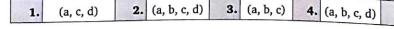
- (a) β is of form 4k + 2, $k \in I$
- (b) $\alpha = 2\beta$
- (c) β is a composite number
- (d) α is of form 4k, $k \in I$
- **3.** A bag contains four tickets marked with 112, 121, 211, 222 one ticket is drawn at random from the bag, let E_i (i = 1,2,3) denote the event that i^{th} digit on the ticket is 2. Then:
 - (a) E_1 and E_2 are independent
- (b) E_2 and E_3 are independent
- (c) E_3 and E_1 are independent
- (d) E_1 , E_2 , E_3 are independent
- **4.** For two events A and B let, $P(A) = \frac{3}{5}$, $P(B) = \frac{2}{3}$, then which of the following is/are correct?
 - (a) $P(A \cap \overline{B}) \leq \frac{1}{3}$

(b) $P(A \cup B) \ge \frac{2}{3}$

(c) $\frac{4}{15} \le P(A \cap B) \le \frac{3}{5}$

(d) $\frac{1}{10} \le P(\overline{A}/B) \le \frac{3}{5}$

Answers



Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

There are four boxes B_1 , B_2 , B_3 and B_4 . Box B_i has i cards and on each card a number is printed, the numbers are from 1 to i. A box is selected randomly, the probability of selecting box B_i is $\frac{i}{10}$ and then a card is drawn.

Let E_i represent the event that a card with number 'i' is drawn. Then :

- **1.** $P(E_1)$ is equal to :
 - (a) $\frac{1}{5}$

- **2.** $P(B_3|E_2)$ is equal to :
 - (a) $\frac{1}{2}$

- (d) $\frac{2}{3}$

Paragraph for Question Nos. 3 to 5

Mr. A randomly picks 3 distinct numbers from the set {1, 2, 3, 4, 5, 6, 7, 8, 9} and arranges them in descending order to form a three digit number. Mr. B randomly picks 3 distinct numbers from the set {1, 2, 3, 4, 5, 6, 7, 8} and also arranges them in descending order to form a 3 digit number.

- 3. The probability that Mr. A's 3 digit number is always greater than Mr. B's 3 digit number is :

- 4. The probability that A and B has the same 3 digit number is:
 - (a)

- (d) $\frac{1}{72}$
- 5. The probability that Mr. A's number is larger than Mr. B's number, is:
 - (a) $\frac{37}{56}$
- (b) $\frac{39}{56}$
- (d) none of these

Paragraph for Question Nos. 6 to 7

In an experiment a coin is tossed 10 times.

- 6. Probability that no two heads are consecutive is:
 - (a) $\frac{143}{2^{10}}$

- (b) $\frac{9}{2^6}$ (c) $\frac{2^7 1}{2^{10}}$ (d) $\frac{2^6 1}{2^6}$

7. The probability of the event that "exactly four heads occur and occur alternately" is :

(a)
$$1-\frac{4}{2^{10}}$$

(b)
$$1 - \frac{7}{2^{10}}$$

(c)
$$\frac{4}{2^{10}}$$

(d)
$$\frac{5}{2^{10}}$$

Paragraph for Question Nos. 8 to 10

The rule of an "obstacle course" specifies that at the n^{th} obstacle a person has to toss a fair 6 sided die n times. If the sum of points in these n tosses is bigger than 2^n , the person is said to have crossed the obstacle.

8. The maximum obstacles a person can cross:

9. The probability that a person crosses the first three obstacles :

(a)
$$\frac{143}{216}$$

(b)
$$\frac{100}{243}$$

(c)
$$\frac{216}{243}$$

(d)
$$\frac{100}{216}$$

10. The probability that a person crosses the first two obstacles but fails to cross the third obstacle.

(a)
$$\frac{36}{243}$$

(b)
$$\frac{116}{216}$$

(c)
$$\frac{35}{243}$$

(d)
$$\frac{143}{243}$$

Paragraph for Question Nos. 11 to 12

In an objective paper, there are two sections of 10 questions each. For 'section 1', each question has 5 options and only one option is correct and 'section 2' has 4 options with multiple answers and marks for a question in this section is awarded only if he ticks all correct answers. Marks for each question in 'section 1' is 1 and in 'section 2' is 3. (There is no negative marking).

11. If a candidate attempts only two questions by gussing, one from 'section 1' and one from 'section 2', the probability that he scores in both questions is:

(a)
$$\frac{74}{75}$$

(b)
$$\frac{1}{25}$$

(c)
$$\frac{1}{15}$$

(d)
$$\frac{1}{75}$$

12. If a candidate in total attempts 4 questions all by gussing, then the probability of scoring 10 marks is:

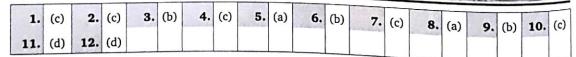
(a)
$$\frac{1}{15} \left(\frac{1}{15}\right)^2$$

(b)
$$\frac{4}{5} \left(\frac{1}{15}\right)^3$$
 (c) $\frac{1}{5} \left(\frac{14}{15}\right)^3$

(c)
$$\frac{1}{5} \left(\frac{14}{15} \right)^3$$

(d) None of these

Answers



Probability 249

Exercise-4: Matching Type Problems

1. A is a set containing n elements, A subset P (may be void also) is selected at random from set A and the set A is then reconstructed by replacing the elements of P. A subset Q (may be void also) of A is again chosen at random. The probability that

	Column-I		Column-II
(A)	Number of elements in P is equal to the number of elements in Q is	(P)	$\frac{2^nC_n}{4^n}$
(B)	The number of elements in P is more than that in Q is	(Q)	$\frac{(2^{2n}-{}^{2n}C_n)}{2^{2n+1}}$
(C)	$P \cap Q = \phi$ is	(R)	$\frac{{}^{2n}C_{n+1}}{4^n}$
(D)	Q is a subset of P is	(S)	$\left(\frac{3}{4}\right)^n$
		(T)	$\frac{{}^{2n}C_n}{4^{n-1}}$

Answers

Exercise-5: Subjective Type Problems

- **1.** Mr. A writes an article. The article originally is error free. Each day Mr. B introduces one new error into the article. At the end of the day, Mr. A checks the article and has $\frac{2}{3}$ chance of catching each individual error still in the article. After 3 days, the probability that the article is error free can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers. Let $\lambda = q p$, then find the sum of the digits of λ .
- **2.** India and Australia play a series of 7 one-day matches. Each team has equal probability of winning a match. No match ends in a draw. If the probability that India wins at least three consecutive matches can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers. Find the unit digit of p.
- **3.** Two hunters A and B set out to hunt ducks. Each of them hits as often as he misses when shooting at ducks. Hunter A shoots at 50 ducks and hunter B shoots at 51 ducks. The probability that B bags more ducks than A can be expressed as $\frac{p}{q}$ in its lowest form. Find the value of (p+q).
- **4.** If $a, b, c \in N$, the probability that $a^2 + b^2 + c^2$ is divisible by 7 is $\frac{m}{n}$ where m, n are relatively prime natural numbers, then m + n is equal to :
- **5.** A fair coin is tossed 10 times. If the probability that heads never occur on consecutive tosses be $\frac{m}{n}$ (where m, n are coprime and m, $n \in N$), then the value of (n-7m) equals to :
- **6.** A bag contains 2 red, 3 green and 4 black balls. 3 balls are drawn randomly and exactly 2 of them are found to be red. If *p* denotes the chance that one of the three balls drawn is green; find the value of 7*p*.
- 7. There are 3 different pairs (i.e., 6 units say a, a, b, b, c, c) of shoes in a lot. Now three person come and pick the shoes randomly (each gets 2 units). Let p be the probability that no one is able to wear shoes (i.e., no one gets a correct pair), then the value of $\frac{13p}{4-p}$, is:
- **8.** A fair coin is tossed 12 times. If the probability that two heads do not occur consecutively is p, then the value of $\frac{[\sqrt{4096p} 1]}{2}$ is, where [] denotes greatest integer function:
- **9.** *X* and *Y* are two weak students in mathematics and their chances of solving a problem correctly are 1/8 and 1/12 respectively. They are given a question and they obtain the same answer. If the probability of common mistake is $\frac{1}{1001}$, then probability that the answer was correct is a/b (a and b are coprimes). Then |a-b| =

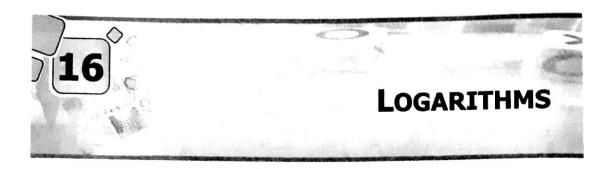
Probability 251

10. Seven digit numbers are formed using digits 1, 2, 3, 4, 5, 6, 7, 8, 9 without repetition. The probability of selecting a number such that product of any 5 consecutive digits is divisible by either 5 or 7 is *P*. Then 12*P* is equal to

- **11.** Assume that for every person the probability that he has exactly one child, excactly 2 children and exactly 3 children are $\frac{1}{4}$, $\frac{1}{2}$ and $\frac{1}{4}$ respectively. The probability that a person will have 4 grand children can be expressed as $\frac{p}{q}$ where p and q are relatively prime positive integers. Find the value of 5p-q.
- **12.** Mr. B has two fair 6-sided dice, one whose faces are numbered 1 to 6 and the second whose faces are numbered 3 to 8. Twice, he randomly picks one of dice (each dice equally likely) and rolls it. Given the sum of the resulting two rolls is 9. The probability he rolled same dice twice is $\frac{m}{n}$ where m and n are relatively prime positive integers. Find (m+n).

1						Ansv	vers				offer process		1
1.	7	2.	7	3.	3	4.	8	5.	1	6.	3	7.	2
8.	9	9.	1	10.	7	11.	7	12.	7				

موو



Exercise-1: Single Choice Problems

 Solution set of the 	ne in equality $\log_{10^2} x - 3$	$3(\log_{10} x)(\log_{10} (x-2))$	$(x-2) + 2\log_{10^2}(x-2) < 0$, is
(a) (0, 4)	(b) $(-\infty, 1)$	(c) (4, ∞)	(d) (2, 4)

- **2.** The number of real solution/s of the equation $9^{\log_3(\log_e x)} = \log_e x (\log_e x)^2 + 1$ is:
- **3.** If a, b, c are positive numbers such that $a^{\log_3 7} = 27$, $b^{\log_7 11} = 49$, $c^{\log_{11} 25} = \sqrt{11}$, then the sum of digits of $S = a^{(\log_3 7)^2} + b^{(\log_7 11)^2} + c^{(\log_{11} 25)^2}$ is :
- 4. Least positive integral value of 'a' for which $\log_{\left(x+\frac{1}{x}\right)}(a^2-3a+3)>0$; (x>0):
- (a) 1 (b) 2 (c) 3 (d) 4 **5.** Let $P = \frac{5}{\frac{1}{\log_2 x} + \frac{1}{\log_3 x} + \frac{1}{\log_4 x} + \frac{1}{\log_5 x}}$ and $(120)^P = 32$, then the value of x be:
- (a) 1 (b) 2 (c) 3 (d) 4 **6.** If x, y, z be positive real numbers such that $\log_{2x}(z) = 3$, $\log_{5y}(z) = 6$ and $\log_{xy}(z) = \frac{2}{3}$ then
 - the value of z is:
 (a) $\frac{1}{5}$ (b) $\frac{1}{10}$ (c) $\frac{3}{5}$ (d) $\frac{4}{9}$
- 7. Sum of values of x and y satisfying $\log_x (\log_3 (\log_x y)) = 0$ and $\log_y 27 = 1$ is:
- (a) 27 (b) 30 (c) 33 (d) **8.** $\log_{0.01} 1000 + \log_{0.1} 0.0001$ is equal to :
- (a) -2 (b) 3 (c) -5/2 (d) 5/2

253

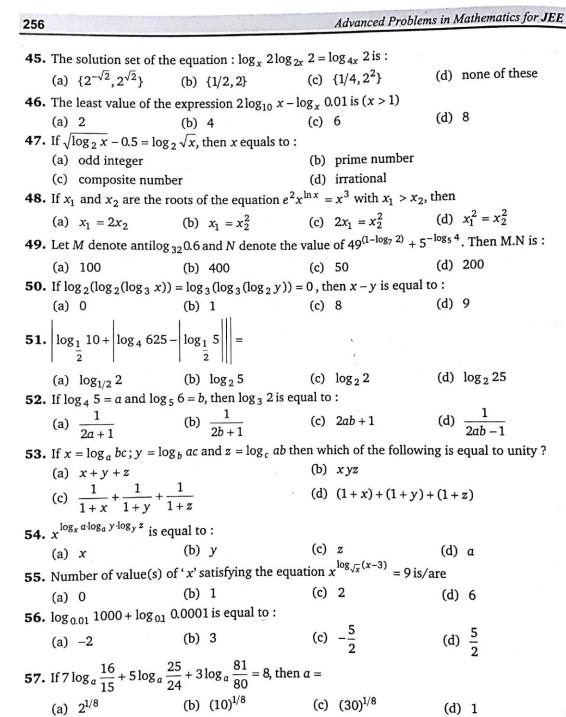
Logarithm

	9	. If l	$og_{12} 27 = a$, then lo	og ₆ 16 =				
				(b) $3\left(\frac{3-a}{3+a}\right)$	(c)	$4\left(\frac{3-a}{3+a}\right)$	(d)	None of these
	10	. If 1	$\log_2(\log_2(\log_3 x))$:	$= \log_2(\log_3(\log_2 y)) =$	0 the	en the value of (x)	+ y) i	s:
		(a)	17	(b) 9	(c)		(d)	
	11	. Su	ppose that a and	b are positive real	num	bers such that	log ₂₇	$a + \log_9 b = \frac{7}{2}$ and
		log	$g_{27} b + \log_9 a = \frac{2}{3}$.	Then the value of $a \cdot b$ is	s:			
		(a)	81	(b) 243	(c)	27	(d)	729
	12	. If 2	$2^a = 5, 5^b = 8, 8^c =$	11 and $11^d = 14$, then t	he va	alue of 2^{abcd} is :		
		(a)	1	(b) 2	(c)	7	(d)	14
	13	. Wh	nich of the following	conditions necessarily			mber	x is rational?
			_	(II) x^3 and x^5 are ra	_			
		(a)	I and II only	(b) I and III only	(c)) II and III only	(d) III only
	14	. The	e value of $\frac{\log_8 17}{\log_9 23}$	$-\frac{\log_{2\sqrt{2}} 17}{\log_3 23}$ is equal to:				
		(a)	-1	(b) 0	(c)	$\frac{\log_2 17}{\log_3 23}$	(d)	$\frac{4(\log_2 17)}{3(\log_3 23)}$
	15.	. The	e true solution set o	of inequality $\log_{(2x-3)}(3)$	3x - 4	4) > 0 is equal to:		
		(a)	$\left(\frac{4}{3},\frac{5}{3}\right)\cup(2,\infty)$	(b) $\left(\frac{3}{2}, \frac{5}{3}\right) \cup (2, \infty)$	(c)	$\left(\frac{4}{3},\frac{3}{2}\right)\cup(2,\infty)$	(d)	$\left(\frac{2}{3},\frac{4}{3}\right)\cup(2,\infty)$
	16.	and	Q is the number of	atural numbers whose l natural numbers logari log ₁₀ P – log ₁₀ Q has th	thm	of whose reciproc		
		(a)	p-q+1	(b) $p-q$	(c)	p+q-1	(d)	p-q-1
	17.	If 2	$2^{2010} = a_n 10^n + a_{n-1}$	$a_1 10^{n-1} + \dots + a_2 1$	$0^{2} +$	$a_1 \cdot 10 + a_0$, whe	re a_i	$\in \{0, 1, 2, \dots, 9\}$
		for	all $i = 0, 1, 2, 3, \dots$	\dots , n , then $n =$				
			603	(b) 604		605		606
	18.	The	number of zeros (0.15) ²⁰ are :	after decimal before t	he st	art of any signifi	cant	digit in the number
		(2)	15	(b) 16	(c)	17	(d)	18
•	19.	log	flog 4 (log ₁₀ 16 ⁴ +	log ₁₀ 25 ⁸)] simplifies t	: 0			
•	-/-		an irrational			an odd prime		12
			a composite			unity		
	20	The	sum of all the solu	tions to the equation 2	log x	(2x-75) =	2:	
4	٠٠.	(a)		(b) 350	(c)	75		200
		(a)	50				/	

254

Advanced Problems in Mathematics for JEE

Log	arith	m						255
32	. If 1	$\log_{0.3}(x-1) < \log_0$	00 (X	-1), then x lies it	the	interval :		
	(a)	(2, ∞)	(b)	(1, 2)	(c)	(-2, -1)		$\left(1,\frac{3}{2}\right)$
33	. The	e absolute integral	value	e of the solution of	f the	equation $\sqrt{7^{2x^2-5x}}$	-6 =	$(\sqrt{2})^{3\log_2 49}$
	(a)	2	(b)	1	(c)	. 4	(a)	5
34	. Let	$1 \le x \le 256$ and M	be th	ie maximum value	of (l	$\log_2 x)^4 + 16(\log_2$	$x)^2$ l	$\log_2\left(\frac{16}{x}\right)$. The sum of
		digits of M is:						()
		9	(b)	11	(c)	13	(d)	15
35	. Let	$1 \le x \le 256$ and M	be tl	ne maximum value	of (l	$\log_2 x)^4 + 16(\log_2$	x) ² 1	$\log_2\left(\frac{16}{x}\right)$. The sum of
		digits of M is:						
	020 20	9		11	3.5	13	-	15
36	. Nu	mber of real solution	on(s)	of the equation 9	log ₃	$(\log nx) = \ln x - (\ln x)$	i^2x)	+1 is:
		0	(b)		(c)		(d)	
37						which $(\log_{16} x)^2 - 1$	log ₁₆	$x + \log_{16} \lambda = 0$ with
		l coefficients will h	722 8					
20	(a)		(b)		(c)		(d)	4
30	(a)	ational number wh	(b)			100		1000
39.		$t = \log_5(1000)$ and			(c)	100	(u)	1000
-		x > y			(c)	x = y	(d)	none of these
40.		$g\left(\frac{16}{15}\right) + 5\log\left(\frac{25}{24}\right)$			·:			
	(a)	0	(b)	1	(c)	log 2	(d)	log 3
41.	log	₁₀ tan 1°+ log ₁₀ tan	2°+.	+ log ₁₀ tan 89	° is e	qual to :		
	(a)		(b)		(c)	27	(d)	81
42.	log	$_7 \log_7 \sqrt{7\sqrt{(7\sqrt{7})}}$ is	s equ	al to:				
		$3\log_2 7$					(d)	$1-3\log_2 7$
43.	If (4	$(9)^{\log_9 3} + (9)^{\log_2 4} =$	(10)	$\log_x 83$, then x is eq	lual t	o:		
	(a)	2	(b)		(c)	10	(d)	30
44.	x	$\log_{10}\left(\frac{y}{z}\right) \cdot y^{\log_{10}\left(\frac{z}{x}\right)} \cdot z^{\log_{10}\left(\frac{z}{x}\right)}$	log ₁₀	$\left(\frac{x}{y}\right)$ is equal to:				
	(a)	0	(b)	1	(c)	-1	(d)	2



Logarithm 257

)=
2

- (c) $\frac{13}{12}$

59. The value of $\left(\frac{1}{\sqrt{27}}\right)^{2-\left(\frac{\log_5 16}{2\log_5 9}\right)}$ equals to :

- (b) $\frac{\sqrt{2}}{27}$
- (c) $\frac{4\sqrt{2}}{27}$

60. The sum of all the roots of the equation $\log_2(x-1) + \log_2(x+2) - \log_2(3x-1) = \log_2 4$

- (c) 10

61. $\frac{(\log_{100} 10)(\log_2(\log_4 2))(\log_4 \log_2^2(256)^2)}{\log_4 8 + \log_8 4}$

- (c) $-\frac{8}{13}$

62. Let $\lambda = \log_5 \log_5(3)$. If $3^{k+5^{-\lambda}} = 405$, then the value of k is:

- (b) 5

63. A circle has a radius $\log_{10}(a^2)$ and a circumference of $\log_{10}(b^4)$. Then the value of $\log_a b$ is equal to:

- (a) $\frac{1}{4\pi}$
- (b) $\frac{1}{\pi}$
- (d) π

64. If $2^x = 3^y = 6^{-z}$, the value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is equal to :

- (c) 2
- (d) 3

(a) 0 (b) 1 **65.** The value of $\log_{(\sqrt{2}-1)}(5\sqrt{2}-7)$ is : (a) 0 (b) 1

- (c) 2 (d) 3

66. The value of $\log_{ab} \left(\frac{\sqrt[3]{a}}{\sqrt{b}} \right)$, if $\log_{ab} a = 4$ is equal to :

- (a) 2
- (b) $\frac{13}{6}$
- (c) $\frac{15}{6}$ (d) $\frac{17}{6}$

67. Identify the correct option

(a) $\log_2 3 < \log_{1/4} 5$

- (b) $\log_5 7 < \log_8 3$
- (c) $\log_{\sqrt[3]{2}} \sqrt{3} > \log_{\sqrt[3]{2}} \sqrt{5}$
- (d) $2^{\frac{1}{4}} > \left(\frac{3}{2}\right)^{1/3}$

68. Sum of all values of x satisfying the system of equations $5(\log_y x + \log_x y) = 26$, xy = 64 is :

- (a) 42
- (b) 34
- (c) 32
- (d) 2

(a) 9

(b) 11

258					Advanced Problem	s in A	<i>Aathematic</i>	s for JEE
69.	The	product of all valu	les of x satisfying the eq	wati	one log - a - log a	= 10	σa is :	
			_	uati	ons log 3 u log x u	- 10	6 x/3 ·	
	(a)	3	(b) $\frac{3}{2}$	(c)	18	(d)	27	
70.	The	value of $x + y + z$	satisfying the system of	eau	ations			
			$_{2}x + \log_{4}y + \log_{4}z =$					
			$3y + \log_9 z + \log_9 x =$,			, ē
		log	. 7 + log . x + log . y -					
	(0)	175	$4z + \log_{16} x + \log_{16} y =$	- 4	353	2.40	112	
	(a)	12	(b) $\frac{349}{24}$	(c)	353 24	(d)	$\frac{112}{3}$	
	(1	1+log ₇ 2 -log ₁ 7			21			
71.		$ \frac{175}{12} \\ $	=					
	(a)	$7\frac{1}{196}$	(b) $7\frac{3}{196}$	(c)	$7\frac{5}{196}$	(4)	$7\frac{1}{98}$	
		-, -	170					
72.	The	number of real	values of x satisfying	a th	a aquation log (O w	s log	$ \ln\left(\frac{3\pi}{4}\right) $
		manufact of real	values of a satisfying	gui	e equation log ₂ (5 – X) - 10g ₂ -	(5-x)
)
	$=\frac{1}{2}$	$+\log_2(x+7)$ is:						
	(a)	0	(b) 1	(c)	2	(d)	3	
73.	If lo	$g_k x \log_5 k = \log_x$	5, $k \neq 1$, $k > 0$, then sum	of a	all values of x is :			
	(a)		0.4		<u>26</u> 5	(d)	37 5	
74.	The	product of all valu	ies of x satisfying the eq	luati	on $ x-1 ^{\log_3 x^2 - 2\log}$	g _x 9 _	$=(x-1)^7$	ic ·
			1/0		01			
	(a)	162	(b) $\frac{162}{\sqrt{3}}$	(c)	$\frac{81}{\sqrt{3}}$	(d)	81	
75.	The	number of values	of x satisfying the equa	tion	$\log_2(9^{x-1} + 7) = 2$	+ log	$g_2(3^{x-1} +$	1) is :
	(a)	1	(b) 2	(c)	3	(d)	0	
76.	Whi	ch is the correct or	der for a given number	α, ο	<i>t</i> > 1	. ,		
	(a)	$\log_2 \alpha < \log_3 \alpha <$	$\log_e \alpha < \log_{10} \alpha$	(b)	$\log_{10} \alpha < \log_{20} \alpha$	< 100		
	(c)	$\log_{10} \alpha < \log_a \alpha <$	$< \log_2 \alpha < \log_3 \alpha$	(d)	log 2 a < log a	· log	e u < 10g	2 α
			- 4h 1	C (1	os w loge u <	rog	$2\alpha < \log_{10}$	0 α
77.			be the maximum value	of (lo	$(\log_2 x)^{\frac{1}{4}} + 16(\log_2 x)^{\frac{1}{4}}$	(c) ² lo	$\log_2\left(\frac{16}{x}\right)$.	The sum o
	the	digits of M is:						

(c) 13

(d) 15

Logarithm 259

78. If $T_r = \frac{1}{\log_2 4}$ (where $r \in N$), then the value of $\sum_{r=1}^4 T_r$ is:

(d) 10

79. In which of the following intervals does $\frac{1}{\log_{1/2}(1/3)} + \frac{1}{\log_{1/5}(1/3)}$ lies

(c) (3, 4)

(d) (4,5)

80. If $\sin \theta = \frac{1}{2} \left(a + \frac{1}{a} \right)$ and $\sin 3\theta = \frac{k}{2} \left(a^3 + \frac{1}{a^3} \right)$, then k + 6 is equal to:

81. Complete set of real values of x for which $\log_{(2x-3)}(x^2-5x-6)$ is defined is:

(a) $\left(\frac{3}{2},\infty\right)$

(b) (6,∞)

(c) $\left(\frac{3}{2},6\right)$ (d) $\left(\frac{3}{2},2\right)\cup(2,\infty)$

1	1							Α	nsv	ver	s								1
1.	(c)	2.	(b)	3.	(c)	4.	(c)	5.	(b)	6.	(b)	7.	(b)	8.	(d)	9.	(c)	10.	(a)
11.	(b)	12.	(d)	13.	(c)	14.	(b)	15.	(ъ)	16.	(a)	17.	(c)	18.	(b)	19.	(d)	20.	(d)
21.	(c)	22.	(c)	23.	(d)	24.	(c)	25.	(d)	26.	(d)	27.	(c)	28.	(c)	29.	(b)	30.	(c)
31.	(b)	32.	(a)	33.	(c)	34.	(c)	35.	(c)	36.	(ъ)	37.	(a)	38.	(c)	39.	(a)	40.	(c)
41.	(a)	42.	(c)	43.	(c)	44.	(b)	45.	(a)	46.	(ъ)	47.	(ъ)	48.	(b)	49.	(a)	50.	(b)
51.	(c)	52.	(d)	53.	(c)	54.	(c)	55.	(ъ)	56.	(d)	57.	(a)	58.	(a)	59.	(d)	60.	(d)
61.	(d)	62.	(c)	63.	(d)	64.	(a)	65.	(d)	66.	(d)	67.	(d)	68.	(b)	69.	(d)	70.	(c)
71.	(a)	72.	(b)	73.	(c)	74.	(a)	75.	(b)	76.	(ъ)	77.	(c)	78.	(c)	79.	(b)	80.	(c)
81.	(b)																		

260

Exercise-2 : One or More than One Answer is/are Correct

1. The values of 'x' satisfies the equation $\frac{1-2(\log x^2)^2}{\log x - 2(\log x)^2} = 1 \text{ (is/are)}:$

(where log is logarithm to the base 10)

(a)
$$\frac{1}{\sqrt{10}}$$

(b)
$$\frac{1}{\sqrt{20}}$$

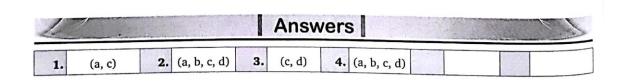
(d)
$$\sqrt{10}$$

- **2.** If $\log_a x = b$ for permissible values of a and x then identify the statement(s) which can be correct?
 - (a) If a and b are two irrational numbers then x can be rational.
 - (b) If a rational and b irrational then x can be rational.
 - (c) If a irrational and b rational then x can be rational.
 - (d) If a rational and b rational then x can be rational.
- **3.** Consider the quadratic equation, $(\log_{10} 8) x^2 (\log_{10} 5) x = 2(\log_2 10)^{-1} x$. Which of the following quantities are irrational?
 - (a) Sum of the roots

- (b) Product of the roots
- (c) Sum of the coefficients
- (d) Discriminant
- **4.** Let $A = \text{Minimum } (x^2 2x + 7), x \in R \text{ and } B = \text{Minimum } (x^2 2x + 7), x \in [2, \infty), \text{ then } :$
 - (a) $\log_{(B-A)}(A+B)$ is not defined
- (b) A + B = 13

(c) $\log_{(2B-A)} A < 1$

(d) $\log_{(2A-B)} A > 1$



Logarithm 261

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let $\log_3 N = \alpha_1 + \beta_1$ $\log_5 N = \alpha_2 + \beta_2$ $\log_7 N = \alpha_3 + \beta_3$

where α_1 , α_2 and α_3 are integers and β_1 , β_2 , $\beta_3 \in [0, 1)$.

- **1.** Number of integral values of *N* if $\alpha_1 = 4$ and $\alpha_2 = 2$:
 - (a) 46
- (b) 45
- (c) 4
- (d) 47
- **2.** Largest integral value of *N* if $\alpha_1 = 5$, $\alpha_2 = 3$ and $\alpha_3 = 2$.
 - (a) 342
- (b) 343
- (c) 243
- (d) 242
- **3.** Difference of largest and smallest integral values of *N* if $\alpha_1 = 5$, $\alpha_2 = 3$ and $\alpha_3 = 2$.
 - (a) 97
- (b) 100
- (c) 98
- (d) 99

Paragraph for Question Nos. 4 to 5

If $\log_{10}|x^3 + y^3| - \log_{10}|x^2 - xy + y^2| + \log_{10}|x^3 - y^3| - \log_{10}|x^2 + xy + y^2| = \log_{10} 221$. Where x, y are integers, then

- **4.** If x = 111, then y can be:
 - (a) ± 111
- (b) ±2
- (c) ±110
- (d) ± 109

- **5.** If y = 2, then value of x can be :
 - (a) ± 111
- (b) ±15
- $(c) \pm 2$
- (d) ±110

Paragraph for Question Nos. 6 to 7

Given a right triangle ABC right angled at C and whose legs are given $1 + 4\log_{p^2}(2p)$, $1 + 2^{\log_2(\log_2 p)}$ and hypotenuse is given to be $1 + \log_2(4p)$. The area of $\triangle ABC$ and circle circumscribing it are Δ_1 and Δ_2 respectively, then

- **6.** $\Delta_1 + \frac{4\Delta_2}{\pi}$ is equal to :
 - (a) 31
- (b) 28
- (c) $3 + \frac{1}{\sqrt{2}}$
- (d) 199

- 7. The value of $\sin\left(\frac{\pi(25p^2\Delta_1+2)}{6}\right) =$
 - (a) $\frac{1}{2}$
- (b) $\frac{1}{\sqrt{2}}$
- (c) $\frac{\sqrt{3}}{2}$
- (d) 1

Answers

1. (c) 2. (a) 3. (d) 4. (c) 5. (b) 6. (a) 7. (c)

262

Advanced Problems in Mathematics for JEE

Exercise-4: Matching Type Problems

1.

	Column-I		Column-II
(A)	If $a = 3(\sqrt{8+2\sqrt{7}} - \sqrt{8-2\sqrt{7}})$, $b = \sqrt{(42)(30) + 36}$, then the	(P)	-1
(B)	value of log _a b is equal to	(0)	
(B)	If $a = (\sqrt{4 + 2\sqrt{3}} - \sqrt{4 - 2\sqrt{3}})$, $b = \sqrt{11 + 6\sqrt{2}} - \sqrt{11 - 6\sqrt{2}}$ then the value of $\log_a b$ is equal to	(Q)	1
(C)	If $a = \sqrt{3 + 2\sqrt{2}}$, $b = \sqrt{3 - 2\sqrt{2}}$, then the value of $\log_a b$ is equal	(R)	2
(D)	If $a = \sqrt{7 + \sqrt{7^2 - 1}}$, $b = \sqrt{7 - \sqrt{7^2 - 1}}$, then the value of $\log_a b$ is equal to		$\frac{3}{2}$
		(T)	None of these

Answers

Logarithm

263

Exercise-5: Subjective Type Problems

where $a, b \in N$ is:

- **1.** The number $N = 6^{\log_{10} 40} \cdot 5^{\log_{10} 36}$ is a natural number. Then sum of digits of N is: 2. The minimum value of 'c' such that $\log_b(a^{\log_2 b}) = \log_a(b^{\log_2 b})$ and $\log_a(c - (b - a)^2) = 3$,
- **3.** How many positive integers b have the property that $\log_b 729$ is a positive integer?
- **4.** The number of negative integral values of x satisfying the inequality $\log_{\left(x+\frac{5}{a}\right)} \left(\frac{x-5}{2x-3}\right)^2 < 0$ is:
- 5. $\frac{6}{5}a^{(\log_a x)(\log_{10} a)(\log_a 5)} 3^{\log_{10}\left(\frac{x}{10}\right)} = 9^{\log_{100} x + \log_4 2}$ (where a > 0, $a \ne 1$), then

 $\log_3 x = \alpha + \beta$, α is integer, $\beta \in [0, 1)$, then $\alpha =$

- **6.** If $\log_5\left(\frac{a+b}{3}\right) = \frac{\log_5 a + \log_5 b}{2}$, then $\frac{a^4 + b^4}{a^2b^2} =$
- 7. Let a, b, c, d are positive integers such that $\log_a b = \frac{3}{2}$ and $\log_c d = \frac{5}{4}$. If (a-c) = 9. Find the value of (b-d).
- 8. The number of real values of x satisfying the equation

$$\log_{10} \sqrt{1+x} + 3\log_{10} \sqrt{1-x} = 2 + \log_{10} \sqrt{1-x^2}$$
 is:

9. The ordered pair (x, y) satisfying the equation

$$x^2 = 1 + 6\log_4 y$$
 and $y^2 = 2^x y + 2^{2x+1}$

are (x_1, y_1) and (x_2, y_2) , then find the value of $\log_2 |x_1 x_2 y_1 y_2|$.

- **10.** If $\log_7 \log_7 \sqrt{7\sqrt{7\sqrt{7}}} = 1 a \log_7 2$ and $\log_{15} \log_{15} \sqrt{15\sqrt{15\sqrt{15}}} = 1 b \log_{15} 2$, then a + b = 1
- 11. The number of ordered pair(s) of (x, y) satisfying the equations $\log_{(1+x)}(1-2y+y^2) + \log_{(1-y)}(1+2x+x^2) = 4$ and $\log_{(1+x)}(1+2y) + \log_{(1-y)}(1+2x) = 2$
- **12.** If $\log_b n = 2$ and $\log_n(2b) = 2$, then nb = 2
- 13. If $\log_y x + \log_x y = 2$, and $x^2 + y = 12$, then the value of xy is:
- **14.** If x, y satisfy the equation, $y^x = x^y$ and x = 2y, then $x^2 + y^2 =$
- **15.** Find the number of real values of x satisfying the equation.

$$\log_2(4^{x+1} + 4) \cdot \log_2(4^x + 1) = \log_{1/\sqrt{2}} \sqrt{\frac{1}{8}}$$

16. If $x_1, x_2(x_1 > x_2)$ are the two solutions of the equation

$$3^{\log_2 x} - 12(x^{\log_{16} 9}) = \log_3 \left(\frac{1}{3}\right)^{3^3}$$
, then the value of $x_1 - 2x_2$ is:

264

Advanced Problems in Mathematics for JEE

- 17. Find the number of real values of x satisfying the equation $9^{2\log_9 x} + 4x + 3 = 0$.
- **18.** If $\log_{16}(\log_{\sqrt[4]{3}}(\log_{\sqrt[4]{5}}(x))) = \frac{1}{2}$; find x.

19. The value
$$\left[\frac{1}{6} \left(\frac{2 \log_{10} (1728)}{1 + \frac{1}{2} \log_{10} (0.36) + \frac{1}{3} \log_{10} 8} \right)^{1/2} \right]^{-1}$$
 is:

				-	, .	Answ	vers					1	
1.	9	2.	8	3.	4	4.	0	5.	4	6	47		
8.	0	9.	7	10.	7	11.	1	12.	2	19	47	7.	9
15.	1	16.	8	17.	0	18.	5	19.	2	13.	9	14.	2

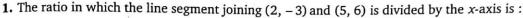
Co-ordinate Geometry

- 17. Straight Lines
- 18. Circle
- 19. Parabola
- 20. Ellipse
- 21. Hyperbola

Chapter 17 - Straight Lines

STRAIGHT LINES

Exercise-1: Single Choice Problems



(a) 3:1

(b) 1:2

(c) $\sqrt{3}:2$

(d) $\sqrt{2}:3$

2. If *L* is the line whose equation is ax + by = c. Let *M* be the reflection of *L* through the *y*-axis, and let *N* be the reflection of *L* through the *x*-axis. Which of the following must be true about *M* and *N* for all choices of *a*, *b* and *c*?

- (a) The x-intercepts of M and N are equal
- (b) The y-intercepts of M and N are equal
- (c) The slopes of M and N are equal
- (d) The slopes of M and N are reciprocal

3. The complete set of real values of 'a' such that the point $P(a, \sin a)$ lies inside the triangle formed by the lines x - 2y + 2 = 0; x + y = 0 and $x - y - \pi = 0$, is:

(a)
$$\left(0, \frac{\pi}{6}\right) \cup \left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

(b)
$$\left(\frac{\pi}{2}, \pi\right) \cup \left(\frac{2\pi}{2}, 2\pi\right)$$

(c) (0, π)

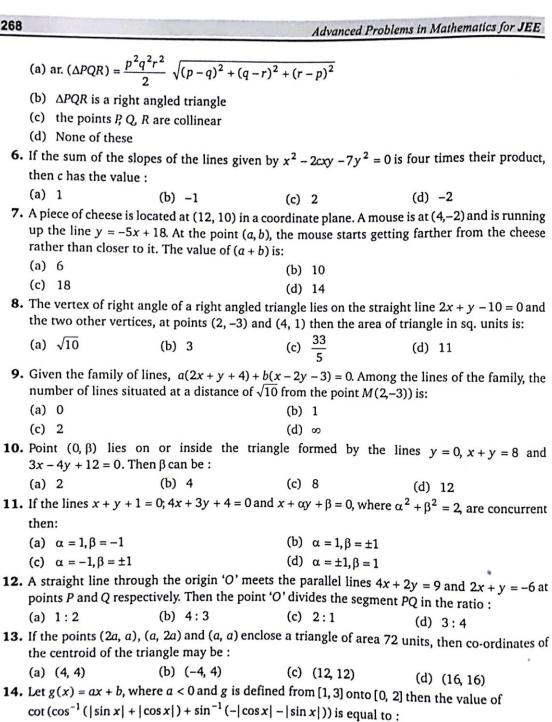
(d)
$$\left(\frac{\pi}{3}, \frac{\pi}{2}\right)$$

4. Let m be a positive integer and let the lines 13x + 11y = 700 and y = mx - 1 intersect in a point whose coordinates are integer. Then m equals to :

- (a) 4
- (b) .
- (c) 6
- (d) 7

5. If $P = \left(\frac{1}{x_p}, p\right)$; $Q = \left(\frac{1}{x_q}, q\right)$; $R = \left(\frac{1}{x_r}, r\right)$

where $x_k \neq 0$, denotes the k^{th} terms of a H.P. for $k \in N$, then:



(c) g(3)

(d) g(1) + g(3)

(b) g(2)

(a) g(1)

15. If the distances of any point P from the points A(a+b, a-b) and B(a-b, a+b) are equal, then

16. If the equation $4y^3 - 8a^2yx^2 - 3ay^2x + 8x^3 = 0$ represent three straight lines, two of them are

17. The orthocentre of the triangle formed by the lines x-7y+6=0, 2x-5y-6=0 and

(c) bx + ay = 0

(c) (1, 1)

(b) ax - by = 0

perpendicular then sum of all possible values of \boldsymbol{a} is equal to :

(b) (0, 0)

Straight lines

locus of P is: (a) ax + by = 0

7x + y - 8 = 0 is:

269

(d) x - y = 0

(d) (2, 8)

18.	All t	the chords of the	curve	$2x^2 + 3y^2 - 5x =$	0 wh	ich subtend a righ	t an	gle at the origin are
		current at :						
	(a)	(0, 1)	(b)	(1, 0)	(c)	(-1, 1)	(d)	(1, -1)
19.	vari	able line $y - 1 = n$	ı(x –	respectively, the				x + 4y - 7 = 0 and a s:
	(a)	10	(b)	12	(c)	6	(d)	9
20.			each	other at the point			-	7x. The diagonals of rhombus is:
	(a)	$\frac{10}{3}$	(b)	$\frac{20}{3}$	(c)	$\frac{40}{3}$	(d)	$\frac{50}{3}$
21.	the	left and vertically	7 3 u		is re	flected across the l		orizontally 3 units to $y = x$. What are the
	(a)	(0, -6)			(b)	(0, 0)		
	(c)	(-6, 6)				(-6, 0)		
22.	The	equations $x = t^3$	+ 9 a	and $y = \frac{3t^3}{4} + 6 \text{ re}$	prese	ents a straight line	whe	ere t is a parameter.
	The	n y-intercept of th	e line	e is :				
		$-\frac{3}{4}$	(b)		(c)		(d)	
23.	The $7x^2$	combined equation $-8xy + y^2 = 0$;	ion o nen sl	of two adjacent sid lope of its longer d	des (iago:	of a rhombus form nal is :	ned	in first quadrant is
	(a)	$-\frac{1}{2}$	(b)	-2	(c)	2	(d)	$\frac{1}{2}$
24.	coor	rdinate axes which	are	ints inside the tria equidistant from a t both of whose co	t leas	st two sides is/are	:	4y - 12 = 0 with the
	(a)	1	(b)	2	(c)	3	(d)	4 -

-		
Strai	ght lines	271
34.	If $\frac{x^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$ represent pair of straithen $ab: h^2$ is:	ght lines and slope of one line is twice the other,
		, and a .
	(a) 9:8 (b) 8:9	(c) 1:2 (d) 2:1
35.	Statement-1: A variable line drawn throug	h a fixed point cuts the coordinate axes at A and B .
	The locus of mid-point of AB is a circle.	
	because	
	Statement-2: Through 3 non-collinear poi	
	(a) Statement-1 is true, statement-2 is to statement-1.	rue and statement-2 is correct explanation for
	(b) Statement-1 is true, statement-2 is true statement-1.	and statement-2 is not the correct explanation for
	(c) Statement-1 is true, statement-2 is false	
	(d) Statement-1 is false, statement-2 is true	
36.	A line passing through origin and is perpe	ndicular to two parallel lines $2x + y + 6 = 0$ and
	4x + 2y - 9 = 0, then the ratio in which the o	
	(a) 1:2	(b) 1:1
	(c) 5:4	(d) 3:4
37.	If a vertex of a triangle is (1, 1) and the mid-	points of two sides through this vertex are (-1, 2)
	and (3, 2), then the centroid of the triangle i	
	(a) $\left(-1, \frac{7}{3}\right)$ (b) $\left(-\frac{1}{3}, \frac{7}{3}\right)$	(c) $\left(1, \frac{7}{3}\right)$ (d) $\left(\frac{1}{3}, \frac{7}{3}\right)$
38.	The diagonals of parallelogram <i>PQRS</i> are alon must be:	ng the lines $x + 3y = 4$ and $6x - 2y = 7$. Then PQRS
	(a) rectangle	(b) square
	(c) rhombus	(d) neither rhombus nor rectangle
39.	The two points on the line $x + y = 4$ that li	e at a unit perpendicular distance from the line
	$4x + 3y = 10$ are (a_1, b_1) and (a_2, b_2) , then a_1	$a_1 + b_1 + a_2 + b_2 =$
	(a) 5 (b) 6	(c) 7 (d) 8
40.	The orthocentre of the triangle formed by the	lines $x + y = 1$, $2x + 3y = 6$ and $4x - y + 4 = 0$ lies
	in:	
	(a) first quadrant	(b) second quadrant
	(c) third quadrant	(d) fourth quadrant
41.	The equation of the line passing through the and perpendicular to $7x - 5y + 3 = 0$ is:	intersection of the lines $3x + 4y = -5$, $4x + 6y = 6$

(b) 5x-7y+2=0

(d) 5x + 7y + 2 = 0

(a) 5x + 7y - 2 = 0

(c) 7x - 5y + 2 = 0

42. The points (2, 1), (8, 5) and (x, 7) lie on a straight line. Then the value of x is:

- (a) 10
- (b) 11
- (c) 12
- (d) $\frac{35}{3}$

43. In a parallelogram *PQRS* (taken in order), *P* is the point (-1, -1), *Q* is (8, 0) and *R* is (7, 5). Then *S* is the point:

- (a) (-1, 4)
- (b) (-2, 2)
- (c) $\left(-2,\frac{7}{2}\right)$
- (d) (-2, 4)

44. The area of triangle whose vertices are (a, a), (a + 1, a + 1), (a + 2, a) is:

- (a) a^{3}
- (b) 2a
- (c) 1
- (d) 2

45. The equation $x^2 + y^2 - 2xy - 1 = 0$ represents :

- (a) two parallel straight lines
- (b) two perpendicular straight lines

(c) a point

(d) a circle

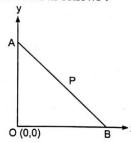
46. Let A = (-2, 0) and B = (2, 0), then the number of integral values of $a, a \in [-10, 10]$ for which line segment AB subtends an acute angle at point C = (a, a + 1) is :

- (a) 15
- (b) 17
- (c) 19
- (d) 21

47. The angle between sides of a rhombus whose $\sqrt{2}$ times sides is mean of its two diagonal, is equal to:

- (a) 300°
- (b) 45°
- (c) 60°
- (d) 90°

48. A rod of AB of length 3 rests on a wall as follows:



P is a point on AB such that AP:PB=1:2. If the rod slides along the wall, then the locus of P lies on

(a) 2x + y + xy = 2

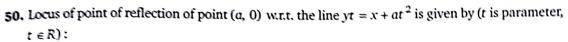
(b) $4x^2 + xy + xy + y^2 = 4$

(c) $4x^2 + y^2 = 4$

(d) $x^2 + y^2 - x - 2y = 0$

49. If $\frac{x^2}{a} + \frac{y^2}{b} + \frac{2xy}{h} = 0$, represents pair of straight lines and slope of one line is twice the other. Then $ab: h^2$ is:

- (a) 8:9
- (b) 1:2
- (c) 2:1
- (d) 9:8



- (a) x-a=0
- (b) y a = 0
- (c) x + a = 0
- (d) y + a = 0
- 51. A light ray emerging from the point source placed at P(1, 3) is reflected at a point Q in the x-axis. If the reflected ray passes through R(6,7), then abscissa of Q is:

Straight lines

- (b) 3
- (d) 1
- 52. If the axes are rotated through 60° in the anticlockwise sense, find the transformed form of the equation $x^2 - y^2 = a^2$:
 - (a) $X^2 + Y^2 3\sqrt{3} XY = 2\sigma^2$
- (b) $X^2 + Y^2 = a^2$
- (c) $Y^2 X^2 2\sqrt{3} XY = 2a^2$
- (d) $X^2 Y^2 + 2\sqrt{3} XY = 2a^2$
- **53.** The straight line 3x + y 4 = 0, x + 3y 4 = 0 and x + y = 0 form a triangle which is:
 - (a) equilateral

- (b) right-angled
- (c) acute-angled and isosceles
- (d) obtuse-angled and isosceles
- **54.** If m and b are real numbers and mb > 0, then the line whose equation is y = mx + b cannot contain the point:
 - (a) (0, 2008)

(b) (2008, 0)

(c) (0, -2008)

- (d) (20, -100)
- 55. The number of possible straight lines, passing through (2, 3) and forming a triangle with coordinate axes, whose area is 12 sq. units, is:
 - (a) one

(b) two

(c) three

- (d) four
- **56.** If x_1, x_2, x_3 and y_1, y_2, y_3 are both in G.P. with the same common ratio then the points (x_1, y_1) , (x_2, y_2) and (x_3, y_3)
 - (a) lie on a straight line

- (b) lie on a circle
- (c) are vertices of a triangle
- (d) None of these
- **57.** Locus of centroid of the triangle whose vertices are $(a \cos t, a \sin t)$, $(b \sin t, -b \cos t)$ and (1, 0); where t is a parameter is:
 - (a) $(3x-1)^2 + (3y)^2 = a^2 b^2$
- (b) $(3x-1)^2 + (3y)^2 = a^2 + b^2$
- (c) $(3x+1)^2 + (3y)^2 = a^2 + b^2$
- (d) $(3x+1)^2 + (3y)^2 = a^2 b^2$
- 58. The equation of the straight line passing through (4, 3) and making intercepts on co-ordinate axes whose sum is -1 is:
 - (a) $\frac{x}{2} + \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
- (b) $\frac{x}{2} \frac{y}{3} = -1$ and $\frac{x}{-2} + \frac{y}{1} = -1$
- (c) $\frac{x}{2} + \frac{y}{2} = 1$ and $\frac{x}{2} + \frac{y}{1} = 1$
- (d) $\frac{x}{2} \frac{y}{3} = 1$ and $\frac{x}{-2} + \frac{y}{1} = 1$

274

59. Let A = (3, 2) and B = (5, 1). ABP is an equilateral triangle is constructed one the side of AB remote from the origin then the orthocentre of triangle ABP is:

(a)
$$\left(4 - \frac{1}{2}\sqrt{3}, \frac{3}{2} - \sqrt{3}\right)$$

(b)
$$\left(4 + \frac{1}{2}\sqrt{3}, \frac{3}{2} + \sqrt{3}\right)$$

(c)
$$\left(4 - \frac{1}{6}\sqrt{3}, \frac{3}{2} - \frac{1}{3}\sqrt{3}\right)$$

(d)
$$\left(4 + \frac{1}{6}\sqrt{3}, \frac{3}{2} + \frac{1}{3}\sqrt{3}\right)$$

60. Area of the triangle formed by the lines through point (6, 0) and at a perpendicular distance of 5 from point (1, 3) and line y = 16 in square units is:

(d) 130

61. The straight lines 3x + y - 4 = 0, x + 3y - 4 = 0 and x + y = 0 form a triangle which is :

(a) equilateral

(b) right-angled

(c) acute-angled and isosceles

(d) obtuse-angled and isosceles

62. The orthocentre of the triangle with vertices $(5,0), (0,0), \left(\frac{5}{2}, \frac{5\sqrt{3}}{2}\right)$ is :

(b)
$$\left(\frac{5}{2}, \frac{5}{2\sqrt{3}}\right)$$

(b)
$$\left(\frac{5}{2}, \frac{5}{2\sqrt{3}}\right)$$
 (c) $\left(\frac{5}{6}, \frac{5}{2\sqrt{3}}\right)$ (d) $\left(\frac{5}{2}, \frac{5}{\sqrt{3}}\right)$

(d)
$$\left(\frac{5}{2}, \frac{5}{\sqrt{3}}\right)$$

63. All chords of a curve $3x^2 - y^2 - 2x + 4y = 0$ which subtends a right angle at the origin passes through a fixed point, which is:

64. Let P(-1,0), Q(0,0), $R(3,3\sqrt{3})$ be three points then the equation of the bisector of the angle

(a)
$$\frac{\sqrt{3}}{2}x + y = 0$$
 (b) $x + \sqrt{3}y = 0$ (c) $\sqrt{3}x + y = 0$

(b)
$$x + \sqrt{3}y = 0$$

$$(c) \quad \sqrt{3}x + y = 0$$

(d)
$$x + \frac{\sqrt{3}}{2}y = 0$$

Answers (c) 3. (c) (c) 1. (b) 2. 5. (c) **6.** (c) 7. (b) 8. (b) (b) 10. (a) 11. (d) 12. (d) 13. (d) 14. (c) 15. (d) 16. (b) 17. (c) 18. (b) 19. (d) 20. (a) 24. 23. 25. 21. (a) 22. (a) (c) (a) (c) 26. (b) 27. (d) 28. (a) 29. (b) 30. (a) 31. (c) 32. (d) 33. (c) 34. (a) 35. (d) 36. (d) 37. (c) 38, (c) 39. (d) **40.** (a) (d) 42. (b) 43. (d) 44. (c) 45. (a) 46. (c) 47. (d) 48. (c) 49. (d) **50.** (c) 51. (a) 52. (c) 53. (d) 54. (b) 55. (c) 56. (a) 57. (b) 58. (d) 59. (d) 60. (c) (d) 62. (b) 63. (b) 64. (c) 61.

Exercise-2: One or More than One Answer is/are Correct

275

1. A line makes intercepts on co-ordinate axes whose sum is 9 and their product is 20; then its equation is/are:

(a)
$$4x + 5y - 20 = 0$$

(b)
$$5x + 4y - 20 = 0$$

(c)
$$4x - 5y - 20 = 0$$

(d)
$$4x + 5y + 20 = 0$$

2. The equation(s) of the medians of the triangle formed by the points (4, 8), (3, 2) and (5, -6) is/are:

(a)
$$x = 4$$

Straight lines

(b)
$$x = 5y - 3$$

(c)
$$2x + 3y - 12 = 0$$

(d)
$$22x + 3y - 92 = 0$$

3. The value(s) of t for which the lines 2x + 3y = 5, $t^2x + ty - 6 = 0$ and 3x - 2y - 1 = 0 are concurrent, can be:

(a)
$$t = 2$$

(b)
$$t = -3$$

(c)
$$t = -2$$

(d)
$$t = 3$$

4. If one of the lines given by the equation $ax^2 + 6xy + by^2 = 0$ bisects the angle between the co-ordinate axes, then value of (a + b) can be:

(a)
$$-\epsilon$$

5. Suppose ABCD is a quadrilateral such that the coordinates of A, B and C are (1, 3), (-2, 6) and (5, -8) respectively. For what choices of coordinates of D will make ABCD a trapezium?

(a)
$$(3, -6)$$

(d)
$$(3, -1)$$

6. One diagonal of a square is the portion of the line $\sqrt{3}x + y = 2\sqrt{3}$ intercepted by the axes. Then an extremity of the other diagonal is :

(a)
$$(1+\sqrt{3},\sqrt{3}-1)$$

(b)
$$(1+\sqrt{3},\sqrt{3}+1)$$

(c)
$$(1-\sqrt{3}, \sqrt{3}-1)$$

(d)
$$(1-\sqrt{3}, \sqrt{3}+1)$$

7. Two sides of a rhombus ABCD are parallel to lines y = x + 2 and y = 7x + 3. If the diagonals of the rhombus intersect at point (1, 2) and the vertex A is on the y-axis is, then the possible coordinates of A are:

(a)
$$\left(0, \frac{5}{2}\right)$$

8. The equation of the sides of the triangle having (3, -1) as a vertex and x - 4y + 10 = 0 and 6x + 10y - 59 = 0 as angle bisector and as median respectively drawn from different vertices, are:

(a)
$$6x + 7y - 13 = 0$$

(b)
$$2x + 9y - 65 = 0$$

(c)
$$18x + 13y - 41 = 0$$

(d)
$$6x - 7y - 25 = 0$$

9. A(1,3) and C(5,1) are two opposite vertices of a rectangle ABCD. If the slope of BD is 2, then the coordinates of B can be :

10. All the points lying inside the triangle formed by the points (1, 3), (5, 6), and (-1, 2) satisfy:

(a)
$$3x + 2y \ge 0$$

(b)
$$2x + y + 1 \ge 0$$

(c)
$$-2x + 11 \ge 0$$

(d)
$$2x + 3y - 12 \ge 0$$

11. The slope of a median, drawn from the vertex A of the triangle ABC is -2. The co-ordinates of vertices B and C are respectively (-1, 3) and (3, 5). If the area of the triangle be 5 square units, then possible distance of vertex A from the origin is/are.

(b) 4

(c) $2\sqrt{2}$

(d)
$$3\sqrt{2}$$

12. The points A(0, 0), $B(\cos \alpha, \sin \alpha)$ and $C(\cos \beta, \sin \beta)$ are the vertices of a right angled triangle if:

(a)
$$\sin\left(\frac{\alpha-\beta}{2}\right) = \frac{1}{\sqrt{2}}$$

(b)
$$\cos\left(\frac{\alpha-\beta}{2}\right) = -\frac{1}{\sqrt{2}}$$

(c)
$$\cos\left(\frac{\alpha-\beta}{2}\right) = \frac{1}{\sqrt{2}}$$

(d)
$$\sin\left(\frac{\alpha-\beta}{2}\right) = -\frac{1}{\sqrt{2}}$$

/					Ansv	vers	8	- 16			
1.	(a, b)	2.	(a, c, d)	3.	(a, b)	4.	(a, c)	5.	(b, d)	6.	(b, c)
7.	(a, b)	8.	(b, c, d)	9.	(a, c)	10.	(a, b, c, d)	11.	(a, c)	12.	

EX

Straight lines

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

The equations of the sides AB and CA of a \triangle ABC are x + 2y = 0 and x - y = 3 respectively. Given a fixed point P(2, 3).

- 1. Let the equation of BC is x + py = q. Then the value of (p + q) if P be the centroid of the $\triangle ABC$ is:
 - (a) 14
- (b) -14
- (c) 22
- (d) -22
- **2.** If *P* be the orthocentre of $\triangle ABC$ then equation of side *BC* is :
 - (a) y + 5 = 0
- (b) y 5 = 0
- (c) 5y + 1 = 0
- (d) 5y 1 = 0

Paragraph for Question Nos. 3 to 4

Consider a triangle ABC with vertex A (2, -4). The internal bisectors of the angles B and C are x + y = 2 and x - 3y = 6 respectively. Let the two bisectors meet at I.

- **3.** If (a, b) is incentre of the triangle *ABC* then (a + b) has the value equal to :
 - (a) 1
- (b) 2
- (c) 3
- (d) 4
- **4.** If (x_1, y_1) and (x_2, y_2) are the co-ordinates of the point B and C respectively, then the value of $(x_1x_2 + y_1y_2)$ is equal to :
 - (a) 4
- (b) 5
- (c) 6
- (d) 8

1							An	swe	ers	MF TO BE SUITE		200	1
1. (d)	2.	(a)	3.	(b)	4.	(d)							

278

Advanced Problems in Mathematics for JEE

Exercise-4: Matching Type Problems

1.

	Column-I		Column-II
(A)	If a, b, c are in A.P., then lines $ax + by + c = 0$ are concurrent at:	(P)	(-4, -7)
(B)	A point on the line $x + y = 4$ which lies at a unit distance from the line $4x + 3y = 10$ is:	(Q)	(-7, 11)
(C)	Orthocentre of triangle made by lines $x + y = 1$, $x - y + 3 = 0$, $2x + y = 7$ is	(R)	(1, -2)
(D)	Two vertice of a triangle are (5, -1) and (-2, 3). If orthocentre is the origin then coordinates of the third vertex are	(S)	(-1, 2)
		(T)	(0, 0)

2.

	Column-l		Column-II
(A)	If $\sum_{r=1}^{n+1} \left(\sum_{k=1}^{n} {}^k C_{r-1} \right) = 30$, then n is equal to	(P)	1
(B)	The number of integral values of g for which atmost one member of the family of lines given by $(1+2\lambda)x+(1-\lambda)y+2+4\lambda=0$ (λ is real parameter) is tangent to the circle $x^2+y^2+4gx+18x+17y+4g^2=0$ can be		4
(C)	Number of solutions of the equation $\sin 9x + \sin 5x + 2\sin^2 x = 1$ in interval $(0, \pi)$ is	(R)	7
(D)	If the roots of the equation $x^2 + ax + b = 0$ $(a, b \in R)$ are $\tan 65^\circ$ and $\tan 70^\circ$, then $(a + b)$ equals.	(S)	10

3.

/	Column-l		Column-II
A)	Exact value of $\cos 40^{\circ}(1 - 2\sin 10^{\circ}) =$	(P)	1
			$\overline{4}$

Straight	line	S		www.com	279
0	В)	Value of λ for which lines are concurrent $x + y + 1 = 0$, $3x + 2\lambda y + 4 = 0$, $x + y - 3\lambda = 0$ can be	(Q)	$\frac{1}{2}$	
- (0	C)	Points $(k, 2-2k)$, $(-k+1, 2k)$ and $(-4-k, 6-2k)$ are collinear then sum of all possible real values of 'k' is	(R)	$\frac{3}{2}$	
O	D)	Value of $\sum_{k=3}^{\infty} \sin^k \left(\frac{\pi}{6}\right) =$	(S)	$-\frac{1}{2}$	

Answers

```
1. A \rightarrow R; B \rightarrow Q; C \rightarrow S; D \rightarrow P
```

^{2.} $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$

^{3.} $A \rightarrow Q$; $B \rightarrow R$; $C \rightarrow S$; $D \rightarrow P$

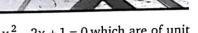
Exercise-5: Subjective Type Problems

- **1.** If the area of the quadrilateral *ABCD* whose vertices are A(1, 1), B(7, -3), C(12, 2) and D(7, 21) is Δ . Find the sum of the digits of Δ .
- **2.** The equation of a line through the mid-point of the sides *AB* and *AD* of rhombus *ABCD*, whose one diagonal is 3x 4y + 5 = 0 and one vertex is A(3, 1) is ax + by + c = 0. Find the absolute value of (a + b + c) where a, b, c are integers expressed in lowest form.
- 3. If the point (α, α^4) lies on or inside the triangle formed by lines $x^2y + xy^2 2xy = 0$, then the largest value of α is.
- **4.** The minimum value of $[(x_1 x_2)^2 + (12 \sqrt{1 x_1^2} \sqrt{4x_2})^2]^{1/2}$ for all permissible values of x_1 and x_2 is equal to $a\sqrt{b} c$ where $a, b, c \in \mathbb{N}$, then find the value of a + b c.
- **5.** The number of lines that can be drawn passing through point (2, 3) so that its perpendicular distance from (-1, 6) is equal to 6 is:
- **6.** The graph of $x^4 = x^2y^2$ is a union of *n* different lines, then the value of *n* is.
- 7. The orthocentre of triangle formed by lines x + y 1 = 0, 2x + y 1 = 0 and y = 0 is (h, k), then $\frac{1}{k^2} = \frac{1}{k^2} = \frac$
- **8.** Find the integral value of a for which the point (-2, a) lies in the interior of the triangle formed by the lines y = x, y = -x and 2x + 3y = 6.
- **9.** Let A = (-1, 0), B = (3, 0) and PQ be any line passing through (4, 1). The range of the slope of PQ for which there are two points on PQ at which AB subtends a right angle is (λ_1, λ_2) , then $5(\lambda_1 + \lambda_2)$ is equal to.
- 10. Given that the three points where the curve $y = bx^2 2$ intersects the x-axis and y-axis form an equilateral triangle. Find the value of 2b.

						Ansv	vers						1
1.	6	2.	1	3.	1	4.	8 ,	5.	0	6.	3	7.	4
8.	3	9.	6	10.	5						J		



Exercise-1: Single Choice Problems



1. The locus of mid-points of the chords of the circle $x^2 - 2x + y^2 - 2y + 1 = 0$ which are of unit length is:

(a)
$$(x-1)^2 + (y-1)^2 = \frac{3}{4}$$

(b)
$$(x-1)^2 + (y-1)^2 = 2$$

(c)
$$(x-1)^2 + (y-1)^2 = \frac{1}{4}$$

(d)
$$(x-1)^2 + (y-1)^2 = \frac{2}{3}$$

2. The length of a common internal tangent to two circles is 5 and a common external tangent is 15, then the product of the radii of the two circles is :

3. A circle with center (2, 2) touches the coordinate axes and a straight line AB where A and B lie on positive direction of coordinate axes such that the circle lies between origin and the line AB. If O be the origin then the locus of circumcenter of $\triangle OAB$ will be:

(a)
$$xy = x + y + \sqrt{x^2 + y^2}$$

(b)
$$xy = x + y - \sqrt{x^2 + y^2}$$

(c)
$$xy + x + y = \sqrt{x^2 + y^2}$$

(d)
$$xy + x + y + \sqrt{x^2 + y^2} = 0$$

4. Length of chord of contact of point (4, 4) with respect to the circle $x^2 + y^2 - 2x - 2y - 7 = 0$ is:

(a)
$$\frac{3}{\sqrt{2}}$$

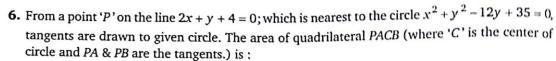
5. Let P, Q, R, S be the feet of the perpendiculars drawn from a point (1, 1) upon the lines x + 4y = 12; x - 4y + 4 = 0 and their angle bisectors respectively; then equation of the circle which passes through Q, R, S is:

(a)
$$x^2 + y^2 - 5x + 3y - 6 = 0$$

(b)
$$x^2 + y^2 - 5x - 3y + 6 = 0$$

(c)
$$x^2 + y^2 - 5x - 3y - 6 = 0$$

(d) None of these



(a) 8

282

(b) $\sqrt{110}$

(c) $\sqrt{19}$

(d) None of these

7. The line 2x - y + 1 = 0 is tangent to the circle at the point (2, 5) and the centre of the circles lies on x - 2y = 4. The radius of the circle is:

(a) $3\sqrt{5}$

(b) $5\sqrt{3}$

(c) 2√5

(d) $5\sqrt{2}$

8. If $A(\cos \alpha, \sin \alpha)$, $B(\sin \alpha, -\cos \alpha)$, C(1, 2) are the vertices of a triangle, then as α varies the locus of centroid of the $\triangle ABC$ is a circle whose radius is :

(a) $\frac{2\sqrt{2}}{3}$

(b) $\sqrt{\frac{4}{3}}$

(c) $\frac{2}{3}$

(d) $\sqrt{\frac{2}{9}}$

9. Tangents drawn to circle $(x-1)^2 + (y-1)^2 = 5$ at point *P* meets the line 2x + y + 6 = 0 at *Q* on the *x*-axis. Length *PQ* is equal to:

(a) $\sqrt{12}$

(b) $\sqrt{10}$

(c) 4

(d) $\sqrt{15}$

10. ABCD is square in which A lies on positive y-axis and B lies on the positive x-axis. If D is the point (12, 17), then co-ordinate of C is:

(a) (17, 12)

(b) (17, 5)

(c) (17, 16)

(d) (15, 3)

11. Statement-1: The lines y = mx + 1 - m for all values of m is a normal to the circle $x^2 + y^2 - 2x - 2y = 0$.

Statement-2: The line *L* passes through the centre of the circle.

(a) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.

(b) Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1.

(c) Statement-1 is true, statement-2 is false.

(d) Statement-1 is false, statement-2 is true.

12. A(1, 0) and B(0, 1) are two fixed points on the circle $x^2 + y^2 = 1$. C is a variable point on this circle. As C moves, the locus of the orthocentre of the triangle ABC is:

(a) $x^2 + y^2 - 2x - 2y + 1 = 0$

(b) $x^2 + y^2 - x - y = 0$

(c) $x^2 + y^2 = 4$

(d) $x^2 + y^2 + 2x - 2y + 1 = 0$

13. Equation of a circle passing through (1, 2) and (2, 1) and for which line x + y = 2 is a diameter;

(a) $x^2 + y^2 + 2x + 2y - 11 = 0$

(b) $x^2 + y^2 - 2x - 2y - 1 = 0$

(c) $x^2 + y^2 - 2x - 2y + 1 = 0$

(d) None of these

Circ	la							202
Circ	10		Control Spring Control Control	A SAN AMERICAN SERVICE				283
14.	The	area of an equil	ateral triangle	inscribed in	a ci	rcle of radius 4 cn	n, is :	
	(a)	12 cm ²				$9\sqrt{3}$ cm ²		
	(c)	$8\sqrt{3}$ cm ²			(d)	$12\sqrt{3}$ cm ²		
15.	Let	all the points or	the curve x	x^2+y^2-10x	= 0	are reflected abou	it the line $y = x + 3$. The
	locu	is of the reflected	d points is in t	he form x^2 +	y ²	+gx+fy+c=0.	The value of $(g + f)$	+ c) is
	equ	al to :						
	(a)		(b) -28		(c)		(d) -38	
16.							$^2 = 6x - 8y$ is equal	to:
		7/5	(b) 9/5			11/5	(d) 32/5	
17.	In t	ne <i>xy-</i> plane, the circle (<i>x</i> – 6) ² +	length of the $(x - 8)^2 - 25$	shortest path	fro	m (0, 0) to (12, 10	6) that does not go	inside
		$10\sqrt{3}$	(y-6) = 25		<i>a</i> >	10 /5		
	15 1.51	10 s <u>ee</u>		12		10√5		
	(c)	$10\sqrt{3} + \frac{5\pi}{3}$			(d)	$10 + 5\pi$		
18.							t. Another circle is	
						gent to the first cir	cle and two of the s	ides of
		triangle. The ra $1/\sqrt{3}$	dius of the sm	ialler circle is		2/3		
		1/2			(d)			
19.		(20)	tangent to the				erpendicular to the r	normal
		wn through the						
		x = 1	(b) $x = 2$		(c)	x + y = 2	(d) $x = 4$	
20.	The	equation of the	line parallel	to the line 3x	+ 4	y = 0 and touchin	g the circle $x^2 + y^2$	= 9 in
	the	first quadrant is	3:					
	(a)	3x + 4y = 15				3x + 4y = 45		
	(c)	3x + 4y = 9		2		3x + 4y = 12	n n	
21.				circles x^2 +	y ²	-10x + 9 = 0, x	$x^2 + y^2 - 6x + 2y + 1$	l=0,
		$+y^2 - 9x - 4y +$						
	(a)	lie on the strai	ght line $x-2y$	y = 5		lie on circle x^2		
	(c)	do not lie on st	raight line				$+y^2 + x + y - 17 =$	
22.	The	equation of the	diameter of t	the circle x^2	+ y 2	$^2 + 2x - 4y = 4 \text{ that}$	at is parallel to $3x +$	-5y = 4

(b) 3x + 5y = 7

(d) 3x + 5y = 1

is:

(a) 3x + 5y = -7

(c) 3x + 5y = 9

284

Advanced Problems in Mathematics for JEE

(a) 2
 (b) 3
 (c) 4
 (d) 5
 24. A square OABC is formed by line pairs xy = 0 and xy + 1 = x + y where 'O'is the origin. A circle with centre C₁ inside the square is drawn to touch the line pair xy = 0 and another circle with centre C₂ and radius twice that of C₁, is drawn to touch the circle C₁ and the other line pair. The radius of the circle with centre C₁ is:

(a) $\frac{\sqrt{2}}{\sqrt{3}(\sqrt{2}+1)}$ (b) $\frac{2\sqrt{2}}{3(\sqrt{2}+1)}$

(c) $\frac{\sqrt{2}}{3(\sqrt{2}+1)}$ (d) $\frac{\sqrt{2}+1}{3\sqrt{2}}$

25. The equation of the circle circumscribing the triangle formed by the points (3, 4), (1, 4) and (3, 2) is:

(a) $8x^2 + 8y^2 - 16x - 13y = 0$ (b) $x^2 + y^2 - 4x - 8y + 19 = 0$

(c) $x^2 + y^2 - 4x - 6y + 11 = 0$ (d) $x^2 + y^2 - 6x - 6y + 17 = 0$

26. The equation of the tangent to circle $x^2 + y^2 + 2gx + 2fy = 0$ at the origin is :

(a) fx + gy = 0 (b) gx + fy = 0 (c) x = 0 (d) y = 0

27. The line y = x is tangent at (0, 0) to a circle of radius 1. The centre of the circle is :

(a) either $\left(-\frac{1}{2}, \frac{1}{2}\right)$ or $\left(\frac{1}{2}, -\frac{1}{2}\right)$ (b) either $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$

(c) either $\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ or $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (d) either (1, 0) or (-1, 0)

28. The circles $x^2 + y^2 + 6x + 6y = 0$ and $x^2 + y^2 - 12x - 12y = 0$:

(a) cut orthogonally (b) touch each other internally

(c) intersect in two points (d) touch each other externally

29. In a right triangle *ABC*, right angled at *A*, on the leg *AC* as diameter, a semicircle is described. The chord joining *A* with the point of intersection *D* of the hypotenuse and the semicircle, then the length *AC* equals to:

(a) $\frac{AB \cdot AD}{\sqrt{AB^2 + AD^2}}$ (b) $\frac{AB \cdot AD}{AB + AD}$

(c) $\sqrt{AB \cdot AD}$ (d) $\frac{AB \cdot AD}{\sqrt{AB^2 - AD^2}}$

30. Radical centre of the circles drawn on the sides as a diameter of triangle formed by the lines 3x - 4y + 6 = 0, x - y + 2 = 0 and 4x + 3y - 17 = 0 is:

(a) (3, 2) (b) (3, -2) (c) (2, -3) (d) (2, 3)

31. Statement-1: A circle can be inscribed in a quadrilateral whose sides are 3x - 4y = 0, 3x - 4y = 5, 3x + 4y = 0 and 3x + 4y = 7.

Statement-2: A circle can be inscribed in a parallelogram if and only if it is a rhombus.

- (a) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (b) Statement-1 is true, statement-2 is true and statement-2 is not the correct explanation for statement-1.
- (c) Statement-1 is true, statement-2 is false.
- (d) Statement-1 is false, statement-2 is true.
- **32.** If x = 3 is the chord of contact of the circle $x^2 + y^2 = 81$, then the equation of the corresponding pair of tangents, is:

(a)
$$x^2 - 8y^2 + 54x + 729 = 0$$

(b)
$$x^2 - 8y^2 - 54x + 729 = 0$$

(c)
$$x^2 - 8y^2 - 54x - 729 = 0$$

(d)
$$x^2 - 8y^2 = 729$$

33. The shortest distance from the line 3x + 4y = 25 to the circle $x^2 + y^2 = 6x - 8y$ is equal to:

(a)
$$\frac{7}{3}$$

(b) $\frac{9}{5}$

(c) $\frac{11}{5}$

(d) $\frac{7}{5}$

34. The circle with equation $x^2 + y^2 = 1$ intersects the line y = 7x + 5 at two distinct points A and B. Let C be the point at which the positive x-axis intersects the circle. The angle ACB is:

(a)
$$\tan^{-1} \frac{4}{3}$$

(b) $\cot^{-1}(-1)$

(c) $tan^{-1} 1$

(d) $\cot^{-1} \frac{4}{3}$

35. The abscissae of two points A and B are the roots of the equation $x^2 + 2ax - b^2 = 0$ and their ordinates are the roots of the equation $x^2 + 2px - q^2 = 0$. The radius of the circle with AB as diameter is:

(a)
$$\sqrt{a^2 + b^2 + p^2 + q^2}$$

(b)
$$\sqrt{a^2 + p^2}$$

(c)
$$\sqrt{b^2 + q^2}$$

(d)
$$\sqrt{a^2+b^2+p^2+1}$$

- **36.** Let C be the circle of radius unity centred at the origin. If two positive numbers x_1 and x_2 are such that the line passing through $(x_1,-1)$ and $(x_2,1)$ is tangent to C then:
 - (a) $x_1 x_2 = 1$

(b) $x_1x_2 = -1$

(c) $x_1 + x_2 = 1$

- (d) $4x_1x_2 = 1$
- **37.** A circle bisects the circumference of the circle $x^2 + y^2 + 2y 3 = 0$ and touches the line x = y at the point (1, 1). Its radius is :
 - (a) $\frac{3}{\sqrt{2}}$
- (b) $\frac{9}{\sqrt{2}}$
- (c) $4\sqrt{2}$
- (d) $3\sqrt{2}$
- **38.** The distance between the chords of contact of tangents to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ from the origin and the point (g, f) is:

286			Advanced Problems in Mathematics for JEE
	(a) $\sqrt{g^2 + f^2}$	(b)	$\frac{\sqrt{g^2+f^2-c}}{2}$
	(c) $\frac{g^2 + f^2 - c}{2\sqrt{g^2 + f^2}}$		$\frac{\sqrt{g^2 + f^2 + c}}{2\sqrt{g^2 + f^2}}$
39.	If the tangents AP and AQ are draw $x^2 + y^2 - 3x + 2y - 7 = 0$ and C is the centre of	vn f circ	from the point $A(3, -1)$ to the circle le, then the area of quadrilateral $APCQ$ is:
	(a) 9 (b) 4	(c)	2 (d) non-existent
40.	Number of integral value(s) of k for which no the circle $x^2 + y^2 = 4$ is :		
	(a) 0 (b) 1	(c)	2 (d) 3
41.	If the length of the normal for each point on a c	15 05	
	(a) is a circle passing through origin		
	(b) is a circle having centre at origin and rad	lius :	> 0
	(c) is a circle having centre on x-axis and to		
	(d) is a circle having centre on y-axis and to		
42.	A circle of radius unity is centred at origin. Two		
	point (1, 0) and move around the circle in oppo		
	clockwise with constant speed v and the other		
	leaving (1, 0), the two particles meet first at a μ	point	P, and continue until they meet next at point
	Q. The coordinates of the point Q are:		
	(a) (1, 0)		(0, 1)
	(c) (0, -1)		(-1, 0)
13.	A variable circle is drawn to touch the x-axis a line $lx + my + n = 0$ w.r.t the variable circle ha	t the	e origin. The locus of the pole of the straight equation:
	(a) $x(my-n)-ly^2=0$	(b)	$x(my+n)-ly^2=0$
	(c) $x(my-n) + ly^2 = 0$	(d)	none of these
14.	The minimum length of the chord of the ci	rcle	$x^2 + y^2 + 2y + 2y - 7 = 0$
	through (1, 0) is :		y = 1 2y = 7 = 0 which is passing
	(a) 2 (b) 4	(c)	$2\sqrt{2}$ (d) $\sqrt{5}$
15	Three concentric circles of which the biggest	is r ²	$\frac{1}{2} + \frac{1}{2} = 1$ have above $\frac{1}{2} = \frac{1}{2}$
	y = x + 1 cuts all the circles in real and disti	nct :	Points. The intermediation A.P. If the line
	difference of the A.P. will lie is:	iict j	points. The interval in which the common
	(a) $\left(0, \frac{1}{4}\right)$ (b) $\left(0, \frac{1}{2\sqrt{2}}\right)$	(c)	$\left(0, \frac{2-\sqrt{2}}{4}\right)$ (d) none

Circle

287

46. The locus of the point of intersection of the tangent to the circle $x^2 + y^2 = a^2$, which include an angle of 45° is the curve $(x^2 + y^2)^2 = \lambda a^2(x^2 + y^2 - a^2)$. The value of λ is:

47. A circle touches the line y = x at point (4, 4) on it. The length of the chord on the line x + y = 0 is $6\sqrt{2}$. Then one of the possible equation of the circle is:

(a)
$$x^2 + y^2 + x - y + 30 = 0$$

(b)
$$x^2 + y^2 + 2x - 18y + 32 = 0$$

(c)
$$x^2 + y^2 + 2x + 18y + 32 = 0$$

(d)
$$x^2 + y^2 - 2x - 22y + 32 = 0$$

48. Point on the circle $x^2 + y^2 - 2x + 4y - 4 = 0$ which is nearest to the line y = 2x + 11 is:

(a)
$$\left(1 - \frac{6}{\sqrt{5}}, -2 + \frac{3}{\sqrt{5}}\right)$$

(b)
$$\left(1+\frac{6}{\sqrt{5}}, -2-\frac{3}{\sqrt{5}}\right)$$

(c)
$$\left(1 - \frac{6}{\sqrt{5}}, -2 - \frac{3}{\sqrt{5}}\right)$$

(d) None of these

49. A foot of the normal from the point (4, 3) to a circle is (2, 1) and a diameter of the circle has the equation 2x - y - 2 = 0. Then the equation of the circle is:

(a)
$$x^2 + y^2 - 4y + 2 = 0$$

(b)
$$x^2 + y^2 - 4y + 1 = 0$$

(c)
$$x^2 + y^2 - 2x - 1 = 0$$

(d)
$$x^2 + y^2 - 2x + 1 = 0$$

50. If $\left(a, \frac{1}{a}\right)$, $\left(b, \frac{1}{b}\right)$, $\left(c, \frac{1}{c}\right)$ and $\left(d, \frac{1}{d}\right)$ are four distinct points on a circle of radius 4 units then, *abcd* is equal to:

1	Answers																		
1.	(a)	2.	(b)	3.	(a)	4.	(b)	5.	(b)	6.	(c)	7.	(a)	8.	(d)	9.	(a)	10.	(b)
11.	(a)	12.	(a)	13.	(c)	14.	(d)	15.	(c)	16.	(a)	17.	(c)	18.	(a)	19.	(d)	20.	(a)
21.	(c)	22.	(b)	23.	(c)	24.	(c)	25.	(c)	26.	(ъ)	27.	(c)	28.	(d)	29.	(d)	30.	(d)
31.	(d)	32.	(b)	33.	(d)	34.	(c)	35.	(a)	36.	(a)	37.	(b)	38.	(c)	39.	(d)	40.	(b)
41.	(b)	42.	(d)	43.	(a)	44.	(b)	45.	(c)	46.	(c)	47.	(b)	48.	(a)	49.	(c)	50.	(c)

Exercise-2: One or More than One Answer is/are Correct

1. Number of circle touching both the axes and the line x + y = 4 is greater than or equal to:

(a) 1

(b) 2

(c) 3

(d) 4

2. Which of the following is/are true?

The circles $x^2 + y^2 - 6x - 6y + 9 = 0$ and $x^2 + y^2 + 6x + 6y + 9 = 0$ are such that :

(a) They do not intersect

(b) They touch each other

(c) Their exterior common tangents are parallel

(d) Their interior common tangents are perpendicular

3. Let ' α ' be a variable parameter, then the length of the chord of the curve :

$$(x - \sin^{-1} \alpha)(x - \cos^{-1} \alpha) + (y - \sin^{-1} \alpha)(y + \cos^{-1} \alpha) = 0$$

along the line $x = \frac{\pi}{4}$ can not be equal to:

(a) $\frac{\pi}{3}$

4. If the point (1, 4) lies inside the circle $x^2 + y^2 - 6x - 10y + p = 0$ and the circle does not touch or intersect the coordinate axes, then which of the following must be correct:

(a) p < 29

(c) p > 27

(d) p < 27

5. The equation of a circle $S_1 = 0$ is $x^2 + y^2 = 4$, locus of the intersection of orthogonal tangents to the circle is the curve C_1 and the locus of the intersection of perpendicular tangents to the curve C_1 is the curve C_2 , then:

(a) C_2 is a circle

(b) C_1 , C_2 are circles having different centres

(c) C_1 , C_2 are circles having same centres

(d) area enclosed between C_1 and C_2 is 8π

6. If two distinct chords drawn from the point (p, q) on the circle $x^2 + y^2 = px + qy$ (where $pq \neq 0$) are bisected by the x-axis, then:

(a) $p^2 = q^2$

(b) $p^2 > q^2$

(c) $p^2 < 8q^2$

(d) $p^2 > 8a^2$

7. If $a = \max\{(x+2)^2 + (y-3)^2\}$ and $b = \min\{(x+2)^2 + (y-3)^2\}$ where x, y satisfying $x^2 + y^2 + 8x - 10y - 40 = 0$, then:

(a) a+b=18

(b) a+b=178

(c) $a-b = 4\sqrt{2}$ (d) $a-b = 72\sqrt{2}$

8. The locus of points of intersection of the tangents to $x^2 + y^2 = a^2$ at the extremeties of a chord of circle $x^2 + y^2 = a^2$ which touches the circle $x^2 + y^2 - 2ax = 0$ is/are:

(a)
$$y^2 = a(a-2x)$$

(b)
$$x^2 = a(a - 2y)$$

(c)
$$x^2 + y^2 = (x-a)^2$$

(d)
$$x^2 + y^2 = (y - a)^2$$

- 9. A circle passes through the points (-1,1), (0,6) and (5,5). The point(s) on this circle, the tangent(s) at which is/are parallel to the straight line joining the origin to its centre is/are
 - (a) (1, -5)
- (b) (5,1)
- (c) (-5, -1)
- (d) (-1, 5)
- **10.** A square is inscribed in the circle $x^2 + y^2 2x + 4y 93 = 0$ with the sides parallel to the co-ordinate axes. The co-ordinate of the vertices are :
 - (a) (8,5)
- (b) (8,9)
- (c) (-6, 5)
- (d) (-6, -9)

				Ansv	vers		1473			
1. (a, b, c, d)	2.	(a, c, d)	3.	(a, b, c)	4.	(a, b)	5.	(a, c, d)	6.	(b, d)
7. (b, d)	8.	(a, c)	9.	(b, d)	10.	(a, c)				

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let each of the circles.

$$S_1 \equiv x^2 + y^2 + 4y - 1 = 0,$$

$$S_2 \equiv x^2 + y^2 + 6x + y + 8 = 0,$$

$$S_3 \equiv x^2 + y^2 - 4x - 4y - 37 = 0$$

touches the other two. Let P_1 , P_2 , P_3 be the points of contact of S_1 and S_2 , S_2 and S_3 , S_3 and S_1 respectively and C_1 , C_2 , C_3 be the centres of S_1 , S_2 , S_3 respectively.

1. The co-ordinates of P_1 are:

(a)
$$(2,-1)$$

(c)
$$(-2, 1)$$

(d)
$$(-2, -1)$$

2. The ratio $\frac{\text{area } (\Delta P_1 P_2 P_3)}{\text{area } (\Delta C_1 C_2 C_3)}$ is equal to :

3. P_2 and P_3 are image of each other with respect to line:

(a)
$$y = x + 1$$

(b)
$$y = -x$$

(c)
$$y = x$$

(d)
$$y = -x + 2$$

Paragraph for Question Nos. 4 to 6

Let A(3, 7) and B(6, 5) are two points. $C: x^2 + y^2 - 4x - 6y - 3 = 0$ is a circle.

4. The chords in which the circle C cuts the members of the family S of circle passing through A and B are concurrent at:

(b)
$$\left(2, \frac{23}{3}\right)$$
 (c) $\left(3, \frac{23}{2}\right)$

(c)
$$(3, \frac{23}{2})$$

5. Equation of the member of the family of circles S that bisects the circumference of C is:

(a)
$$x^2 + y^2 - 5x - 1 = 0$$

(b)
$$x^2 + y^2 - 5x + 6y - 1 = 0$$

(c)
$$x^2 + y^2 - 5x - 6y - 1 = 0$$

(d)
$$x^2 + y^2 + 5x - 6y - 1 = 0$$

6. If O is the origin and P is the center of C, then absolute value of difference of the squares of the lengths of the tangents from A and B to the circle C is equal to:

(a)
$$(AB)^2$$

(c)
$$|(AP)^2 - (BP)^2|$$
 (d) $(AP)^2 + (BP)^2$

(d)
$$(AP)^2 + (BP)^2$$

Paragraph for Question Nos. 7 to 8

Let the diameter of a subset S of the plane be defined as the maximum of the distance between arbitrary pairs of points of S.

7. Let $S = \{(x, y): (y - x) \le 0, x + y \ge 0, x^2 + y^2 \le 2\}$, then the diameter of S is:

(a) 2

(c)
$$\sqrt{2}$$

(d)
$$2\sqrt{2}$$

291

8. Let $S = \{(x, y) : (\sqrt{5} - 1)x - \sqrt{10 + 2\sqrt{5}} \ y \ge 0, (\sqrt{5} - 1) \ x + \sqrt{10 + 12\sqrt{5}} \ y \ge 0, \ x^2 + y^2 \le 9\}$ then the diameter of S is :

(a)
$$\frac{3}{2}(\sqrt{5}-1)$$

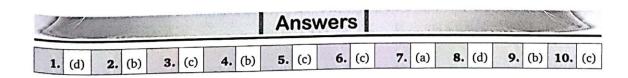
(b)
$$3(\sqrt{5}-1)$$

(c)
$$3\sqrt{2}$$

Paragraph for Question Nos. 9 to 10

Let L_1 , L_2 and L_3 be the lengths of tangents drawn from a point P to the circles $x^2 + y^2 = 4$, $x^2 + y^2 - 4x = 0$ and $x^2 + y^2 - 4y = 0$ respectively. If $L_1^4 = L_2^2 L_3^2 + 16$ then the locus of P are the curves, C_1 (a straight line) and C_2 (a circle).

- **9.** Circum centre of the triangle formed by C_1 and two other lines which are at angle of 45° with C_1 and tangent to C_2 is :
 - (a) (1,1)
- (b) (0,0)
- (c) (-1, -1)
- (d) (2, 2)
- 10. If S_1 , S_2 and S_3 are three circles congruent to C_2 and touch both C_1 and C_2 ; then the area of triangle formed by joining centres of the circles S_1 , S_2 and S_3 is (in square units)
 - (a) 2
- (b) 4
- (c) 8
- (d) 16



Advanced Problems in Mathematics for JEE

292

Exercise-4: Matching Type Problems

1.

	Column-I		Column-II
(A)	The triangle <i>PQR</i> is inscribed in the circle $x^2 + y^2 = 169$. If <i>Q</i> (5, 12) and <i>R</i> (-12, 5) then $\angle QPR$ is	(P)	π/6
(B)	The angle between the lines joining the origin to the points of intersection of the line $4x + 3y = 24$ with circle $(x-3)^2 + (y-4)^2 = 25$		π/4
(C)	Two parallel tangents drawn to given circle are cut by a third tangent. The angle subtended by the portion of third tangent between the given tangents at the centre is	(R)	π/3
(D)	A chord is drawn joining the point of contact of tangents drawn from a point P to the circle. If the chord subtends an angle $\pi/2$ at the centre then the angle included between the tangents at P is	(S)	π/2
		(T)	π

2.

	Column-l		Column-II
(A)	A ray of light coming from the point $(1, 2)$ is reflected at a point A on the x -axis then passes through the point $(5, 3)$. The coordinates of the point A are :	(P)	$\left(\frac{13}{5},0\right)$
(B)	The equation of three sides of triangle ABC are $x + y = 3$, $x - y = 5$ and $3x + y = 4$. Considering the sides as diameter, three circles S_1 , S_2 , S_3 are drawn whose radical centre is at:	(Q)	(4, -1)
(C)	If the straight line $x - 2y + 1 = 0$ intersects the circle $x^2 + y^2 = 25$ at the points P and Q , then the coordinate of the point of intersection of tangents drawn at P and Q to the circle is		(-25, 50)
(D)	The equation of three sides of a triangle are $4x + 3y + 9 = 0$, $2x + 3 = 0$ and $3y - 4 = 0$. The circum centre of the triangle is:	(S)	$\left(\frac{-19}{8},\frac{1}{6}\right)$
		(T)	(-1, 2)

Answers

293

1. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow S$; $D \rightarrow S$

2. $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$

A

Exercise-5: Subjective Type Problems

- 1. Tangents are drawn to circle $x^2 + y^2 = 1$ at its intersection points (distinct) with the circle $x^2 + y^2 + (\lambda 3)x + (2\lambda + 2)y + 2 = 0$. The locus of intersection of tangents is a straight line, then the slope of that straight line is.
- 2. The radical centre of the three circles is at the origin. The equations of the two of the circles are $x^2 + y^2 = 1$ and $x^2 + y^2 + 4x + 4y 1 = 0$. If the third circle passes through the points (1, 1) and (-2, 1); and its radius can be expressed in the form of $\frac{p}{q}$, where p and q are relatively prime positive integers. Find the value of (p + q).
- 3. Let $S = \{(x, y) \mid x, y \in R, x^2 + y^2 10x + 16 = 0\}$. The largest value of $\frac{y}{x}$ can be put in the form $\frac{m}{n}$ where m, n are relatively prime natural numbers, then $m^2 + n^2 = \frac{m}{n}$
- **4.** In the above problem, the complete range of the expression $x^2 + y^2 26x + 12y + 210$ is [a, b], then b 2a =
- **5.** If the line y = 2 x is tangent to the circle S at the point P(1, 1) and circle S is orthogonal to the circle $x^2 + y^2 + 2x + 2y 2 = 0$, then find the length of tangent drawn from the point (2, 2) to circle S.
- **6.** Two circles having radii r_1 and r_2 passing through vertex A of a triangle ABC. One of the circle touches the side BC at B and other circle touches the side BC at C. If a = 5 and $A = 30^\circ$; find $\sqrt{r_1 r_2}$.
- 7. A circle S of radius 'a' is the director circle of another circle S_1 . S_1 is the director circle of S_2 and so on. If the sum of radius of S, S_1 , S_2 , S_3 circles is '2' and $a = (k \sqrt{k})$, then the value of k is
- **8.** If r_1 and r_2 be the maximum and minimum radius of the circle which pass through the point (4, 3) and touch the circle $x^2 + y^2 = 49$, then $\frac{r_1}{r_2}$ is
- **9.** Let C be the circle $x^2 + y^2 4x 4y 1 = 0$. The number of points common to C and the sides of the rectangle determined by the lines x = 2, x = 5, y = -1 and y = 5 is P then find P.
- 10. Two congruent circles with centres at (2, 3) and (5, 6) intersects at right angle; find the radius of the circle.
- **11.** The sum of abscissa and ordinate of a point on the circle $x^2 + y^2 4x + 2y 20 = 0$ which is nearest to $\left(2, \frac{3}{2}\right)$ is:
- 12. AB is any chord of the circle $x^2 + y^2 6x 8y 11 = 0$ which subtends an angle $\frac{\pi}{2}$ at (1, 2). If locus of midpoint of AB is a circle $x^2 + y^2 2ax 2by c = 0$; then find the value of (a + b + c).

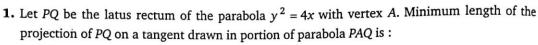
Circle 295

13. If circles $x^2 + y^2 = c$ with radius $\sqrt{3}$ and $x^2 + y^2 + ax + by + c = 0$ with radius $\sqrt{6}$ intersect at two points A and B. If length of $AB = \sqrt{l}$. Find l.

2/		Answers												
1.	2	2.	5	3.	25	4.	66	5.	2	6.	5	7.	2	
8.	6	9.	3	10.	3	11.	6	12.	8	13.	8			



Exercise-1: Single Choice Problems



proj	ection of PQ on a tangent drawn in po	ortion of parabola PAQ is .	
(a)	2	(b) 4	
(c)	2,/3	(d) $2\sqrt{2}$	

2. A normal is drawn to the parabola $y^2 = 9x$ at the point P(4, 6). A circle is described on SP as diameter; where S is the focus. The length of the intercept made by the circle on the normal at point P is:

(a)
$$\frac{17}{4}$$
 (b) $\frac{15}{4}$ (c) 4 (d) 5

3. A trapezium is inscribed in the parabola $y^2 = 4x$, such that its diagonal pass through the point (1, 0) and each has length $\frac{25}{4}$. If the area of the trapezium be *P*, then 4*P* is equal to :

(a) 70 (b) 71 (c) 80 (d) 75
4. The length of normal chord of parabola
$$y^2 = 4x$$
, which subtends an angle of 90° at the vertex is

(a) 6√3
 (b) 7√2
 (c) 8√2
 (d) 9√2
 5. If b and c are the lengths of the segments of any focal chord of a parabola y² = 4ax. Then the length of semi-latus rectum is:

(a)
$$\frac{bc}{b+c}$$
 (b) $\frac{2bc}{b+c}$ (c) $\frac{b+c}{b+c}$

6. The length of the shortest path that begins at the point (-1, 1), touches the x-axis and then ends at a point on the parabola $(x-y)^2 = 2(x+y-4)$, is:

(a) $3\sqrt{2}$	(b) 5	(c) $4\sqrt{10}$	(d) 13

298

16. A focal chord for parabola $y^2 = 8(x + 2)$ is inclined at an angle of 60° with positive x-axis and intersects the parabola at P and Q. Let perpendicular bisector of the chord PQ intersects the x-axis at R; then the distance of R from focus is:

(a) $\frac{8}{3}$

(b) $\frac{16\sqrt{3}}{3}$

(c) $\frac{16}{3}$

(d) $8\sqrt{3}$

17. The Director circle of the parabola $(y-2)^2 = 16(x+7)$ touches the circle $(x-1)^2 + (y+1)^2 = r^2$, then r is equal to:

(a) 10

(b) 11

(c) 12

(d) None of these

18. The chord of contact of a point $A(x_A, y_A)$ of $y^2 = 4x$ passes through (3, 1) and point A lies on $x^2 + y^2 = 5^2$. Then:

(a) $5x_A^2 + 24x_A + 11 = 0$

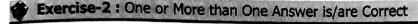
(b) $13x_A^2 + 8x_A - 21 = 0$

(c) $5x_A^2 + 24x_A + 61 = 0$

(d) $13x_A^2 + 21x_A - 31 = 0$

1	1							A	nsı	ver	S							1	1
1.	(d)	2.	(b)	3.	(d)	4.	(a)	5.	(b)	6.	(a)	7.	(c)	8.	(a)	9.	(c)	10.	(b)
11.	(b)	12.	(a)	13.	(d)	14.	(a)	15.	(d)	16.	(c)	17.	(c)	18.	(a)				

Parabola 299



- **1.** PQ is a double ordinate of the parabola $y^2 = 4ax$. If the normal at P intersect the line passing through Q and parallel to x-axis at G; then locus of G is a parabola with:
 - (a) vertex at (4a, 0)

- (b) focus at (5a, 0)
- (c) directrix as the line x 3a = 0
- (d) length of latus rectum equal to 4a

	A	nswers		5
1. (a, b, c, d)				

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Consider the following lines:

$$L_1: x - y - 1 = 0$$

$$L_2: x + y - 5 = 0$$

$$L_3:y-4=0$$

Let L_1 is axis to a parabola, L_2 is tangent at the vertex to this parabola and L_3 is another tangent to this parabola at some point P.

Let 'C' be the circle circumscribing the triangle formed by tangent and normal at point P and axis of parabola. The tangent and normals at the extremities of latus rectum of this parabola forms a quadrilateral ABCD.

1. The equation of the circle 'C' is:

(a)
$$x^2 + y^2 - 2x - 31 = 0$$

(b)
$$x^2 + y^2 - 2y - 31 = 0$$

(c)
$$x^2 + y^2 - 2x - 2y - 31 = 0$$

(d)
$$x^2 + y^2 + 2x + 2y = 31$$

2. The given parabola is equal to which of the following parabola?

(a)
$$y^2 = 16\sqrt{2}x$$

(b)
$$x^2 = -4\sqrt{2}y$$

(c)
$$y^2 = -\sqrt{2}x$$

(d)
$$y^2 = 8\sqrt{2}x$$

3. The area of the quadrilateral ABCD is:

- (a) 16
- (b) 8
- (c) 64
- (d) 32

La la					Ar	swers		
1. (a)	2.	(d)	3.	(c)				

Parabola . 301

Exercise-4: Matching Type Problems

1.

	Column-I		Column-II
(A)	The equation of tangent to the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ which cuts off equal intercepts on axes is $x - y = a$ where $ a $ equal to	(P)	$\sqrt{2}$
(B)	The normal $y = mx - 2am - am^2$ to the parabola $y^2 = 4ax$ subtends a right angle at the vertex if $ m $ equal to	(Q)	√3
(C)	The equation of the common tangent to parabola $y^2 = 4x$ and $x^2 = 4y$ is $x + y + \frac{k}{\sqrt{3}} = 0$, then k is equal to	(R)	√8
(D)	An equation of common tangent to parabola $y^2 = 8x$ and the hyperbola $3x^2 - y^2 = 3$ is $4x - 2y + \frac{k}{\sqrt{2}} = 0$, then k is equal to	(S)	$\sqrt{41}$
		(T)	2

2.

	Column-l		Column-II
(A)	Area of ΔPQR is equal to	(P)	2
(B)	Radius of circumcircle of ΔPQR is equal to	(Q)	$\frac{5}{2}$
(C)	Distance of the vertex from the centroid of ΔPQR is equal to	(R)	$\frac{3}{2}$
(D)	Distance of the centroid from the circumcentre of ΔPQR is equal to	(S)	$\frac{2}{3}$
		(T)	$\frac{11}{6}$

Answers

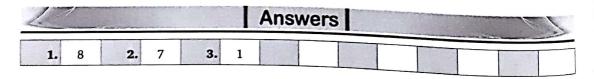
1.
$$A \rightarrow S$$
; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$

2.
$$A \rightarrow P$$
; $B \rightarrow Q$; $C \rightarrow S$; $D \rightarrow T$

302

Exercise-5 : Subjective Type Problems

- 1. Points A and B lie on the parabola $y = 2x^2 + 4x 2$, such that origin is the mid-point of the line segment AB. If 'l' be the length of the line segment AB, then find the unit digit of l^2 .
- 2. For the parabola $y = -x^2$, let a < 0 and b > 0; $P(a, -a^2)$ and $Q(b, -b^2)$. Let M be the mid-point of PQ and R be the point of intersection of the vertical line through M, with the parabola. If the ratio of the area of the region bounded by the parabola and the line segment PQ to the area of the triangle PQR be $\frac{\lambda}{\mu}$; where λ and μ are relatively prime positive integers, then find the value of $(\lambda + \mu)$:
- **3.** The chord AC of the parabola $y^2 = 4ax$ subtends an angle of 90° at points B and D on the parabola. If points A, B, C and D are represented by $(at_i^2, 2at_i)$, i = 1, 2, 3, 4 respectively, then find the value of $\left|\frac{t_2 + t_4}{t_1 + t_3}\right|$.



000

Exercise-1: Single Choice Problems

1. If CF be the perpendicular from the centre C of the ellipse $\frac{x^2}{12} + \frac{y^2}{8} = 1$, on the tangent at any point P and G is the point where the normal at P meets the major axis, then the value of $(CF \cdot PG)$ equals to:

- (a) 5
- (b) 6
- (d) None of these

2. The minimum length of intercept on any tangent to the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ cut by the circle $x^2 + y^2 = 25$ is:

- (a) 8
- (b) 9
- (c) 2

3. The point on the ellipse $x^2 + 2y^2 = 6$, whose distance from the line x + y = 7 is minimum is:

- (b) (2, 1)
- (c) (1, 0)
- (d) None of these

4. If lines 2x + 3y = 10 and 2x - 3y = 10 are tangents at the extremities of a latus rectum of an ellipse; whose centre is origin, then the length of the latus rectum is :

5. The area bounded by the circle $x^2 + y^2 = a^2$ and the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to the area of another ellipse having semi-axes:

- (a) a+b and b
- (b) a-b and a
- (c) a and b
- (d) None of these

6. If F_1 and F_2 are the feet of the perpendiculars from foci S_1 and S_2 of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ on the tangent at any point P of the ellipse, then : (a) $S_1F_1 + S_2F_2 \ge 2$ (b) $S_1F_1 + S_2F_2 \ge 3$ (c) $S_1F_1 + S_2F_2 \ge 6$ (d) $S_1F_1 + S_2F_2 \ge 8$

304

7. Consider the ellipse $\frac{x^2}{f(k^2+2k+5)} + \frac{y^2}{f(k+11)} = 1$, where f(x) is a positive decreasing

function, then the value of k for which major axis coincides with x -axis is :

(a) $k \in (-7, -5)$

(b) $k \in (-5, -3)$

(c) $k \in (-3, 2)$

(d) None of these

8. If area of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ inscribed in a square of side length $5\sqrt{2}$ is A, then $\frac{A}{\pi}$ equals to:

(a) 12

(b) 10

(c) 8

(d) 13

9. Any chord of the conic $x^2 + y^2 + xy = 1$ passing through origin is bisected at a point (p, q), then (p + q + 12) equals to:

(a) 13

(b) 1

(c) 11

(d) 1

10. Tangents are drawn from the point (4, 2) to the curve $x^2 + 9y^2 = 9$, the tangent of angle between the tangents:

(a) $\frac{3\sqrt{3}}{5\sqrt{17}}$

(b) $\frac{\sqrt{43}}{10}$

(c) $\frac{\sqrt{43}}{5}$

(d) $\sqrt{\frac{3}{17}}$

1				Answ	/ers				
1. (c)	2. (a)	3. (b)	4. (c)	5. (b)	6. (d)	7. (c)	8. (a)	9. (d)	10. (c)

(1)

Exercise-2: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

An ellipse has semi-major axis of length 2 and semi-minor axis of length 1. It slides between the co-ordinate axes in the first quadrant, while maintaining contact with both x-axis and y-axis.

1. The locus of the centre of ellipse is:

(a)
$$x^2 + y^2 = 3$$

(b)
$$x^2 + y^2 = 5$$

(c)
$$(x-2)^2 + (y-1)^2 = 5$$

(d)
$$(x-2)^2 + (y-1)^2 = 3$$

2. The locus of the foci of the ellipse is:

(a)
$$x^2 + y^2 + \frac{1}{x^2} + \frac{1}{y^2} = 16$$

(b)
$$x^2 + y^2 + \frac{1}{x^2} - \frac{1}{y^2} = 2\sqrt{3} + 4$$

(c)
$$x^2 + y^2 - \frac{1}{x^2} - \frac{1}{y^2} = 2\sqrt{3} + 4$$

(d)
$$x^2 - y^2 + \frac{1}{x^2} - \frac{1}{y^2} = 2\sqrt{3} + 4$$

Paragraph for Question Nos. 3 to 5

A coplanar beam of light emerging from a point source have the equation $\lambda x - y + 2(1 + \lambda) = 0$, $\forall \lambda \in R$; the rays of the beam strike an elliptical surface and get reflected inside the ellipse. The reflected rays form another convergent beam having the equation $\mu x - y + 2(1 - \mu) = 0$, $\forall \mu \in R$. Further it is found that the foot of the perpendicular from the point (2, 2) upon any tangent to the ellipse lies on the circle $x^2 + y^2 - 4y - 5 = 0$

3. The eccentricity of the ellipse is equal to:

(a)
$$\frac{1}{3}$$

(b)
$$\frac{1}{\sqrt{3}}$$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{1}{2}$$

- **4.** The area of the largest triangle that an incident ray and corresponding reflected ray can enclose with the major axis of the ellipse is equal to:
 - (a) $4\sqrt{5}$

(b) √5

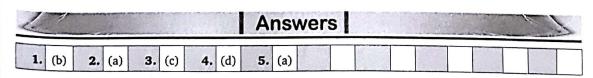
(c) 3√5

- (d) $2\sqrt{5}$
- **5.** The least value of total distance travelled by an incident ray and the corresponding reflected ray is equal to:
 - (a) 6

(b) 3

(c) $\sqrt{5}$

(d) $2\sqrt{5}$



Advanced Problems in Mathematics for JEE

306

Exercise-3: Matching Type Problems

1777

1.

	Column-I		Column-II
(A)	If the tangent to the ellipse $x^2 + 4y^2 = 16$ at the point $P(4\cos\phi, 2\sin\phi)$ is a normal to the circle $x^2 + y^2 - 8x - 4y = 0$ then $\frac{\phi}{2}$ may be	(P)	0
(B)	The eccentric angle(s) of a point on the ellipse $x^2 + 3y^2 = 6$ at a distance 2 units from the centre of the ellipse is/are	(Q)	$\cos^{-1}\left(-\frac{2}{3}\right)$
(C)	The eccentric angle of point of intersection of the ellipse $x^2 + 4y^2 = 4$ and the parabola $x^2 + 1 = y$ is	(R)	$\frac{\pi}{4}$
(D)	If the normal at the point $P(\sqrt{14}\cos\theta, \sqrt{5}\sin\theta)$ to the ellipse $\frac{x^2}{14} + \frac{y^2}{5} = 1$ intersect it again at the point $Q(\sqrt{14}\cos 2\theta, \sqrt{5}\sin 2\theta)$, then θ is	(S)	<u>5π</u> 4
		(T)	$\frac{\pi}{2}$

Answers

Ellipse 307

Exercise-4 : Subjective Type Problems

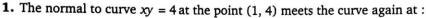
- **1.** For the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$. Let *O* be the centre and *S* and *S'* be the foci. For any point *P* on the ellipse the value of *PS*. $PS'd^2$ (where *d* is the distance of *O* from the tangent at *P*) is equal to
- 2. Number of perpendicular tangents that can be drawn on the ellipse $\frac{x^2}{16} + \frac{y^2}{25} = 1$ from point (6, 7) is

1			Answe	rs		5
1. 4	2.	0				

Chapter 21 - Hyperbola

HYPERBOLA

Exercise-1: Single Choice Problems



(b)
$$\left(-8, -\frac{1}{2}\right)$$

(c)
$$\left(-16, -\frac{1}{4}\right)$$

2. Let PQ: 2x + y + 6 = 0 is a chord of the curve $x^2 - 4y^2 = 4$. Coordinates of the point $R(\alpha, \beta)$ that satisfy $\alpha^2 + \beta^2 - 1 \le 0$; such that area of triangle PQR is minimum; are given by:

(a)
$$\left(\frac{-2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$

(b)
$$\left(\frac{-2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$$

(c)
$$\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$$

(d)
$$\left(\frac{2}{\sqrt{5}}, \frac{-1}{\sqrt{5}}\right)$$

3. If y = mx + c be a tangent to hyperbola $\frac{x^2}{\lambda^2} - \frac{y^2}{(\lambda^3 + \lambda^2 + \lambda)^2} = 1$, then least value of 16 m^2 equals to:

(a) 0

(d) 9

4. Let the double ordinate PP' of the hyperbola $\frac{x^2}{4} - \frac{y^2}{3} = 1$ is produced both sides to meet asymptotes of hyperbola in Q and Q'. The product (PQ)(PQ') is equal to:

(a) 3

(4) 5

5. If eccentricity of conjugate hyperbola of the given hyperbola :

$$|\sqrt{(x-1)^2 + (y-2)^2} - \sqrt{(x-5)^2 + (y-5)^2}| = 3$$

is e', then value of 8e' is:

(a) 12

(d) 10

6. A normal to the hyperbola $\frac{x^2}{4} - \frac{y^2}{1} = 1$ has equal intercepts on positive x and positive y-axes. If this normal touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then $3(a^2 + b^2)$ is equal to:

(a) 5

(b) 25

(c) 16

(d) None of these

7. Locus of a point, whose chord of contact with respect to the circle $x^2 + y^2 = 4$ is a tangent to the hyperbola xy = 1 is a/an:

(a) ellipse

(b) circle

(c) hyperbola

(d) parabola

8. Let the chord $x \cos \alpha + y \sin \alpha = p$ of the hyperbola $\frac{x^2}{16} - \frac{y^2}{18} = 1$ subtends a right angle at the centre. Let diameter of the circle, concentric with the hyperbola, to which the given chord is a tangent is d, then $\frac{d}{d}$ is equal to:

(a) 4

(b) 5

(c) 6

(d) 7

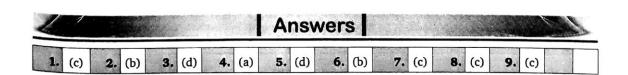
9. If the tangent and normal at a point on rectangular hyperbola cut-off intercept a_1 , a_2 on x-axis and b_1 , b_2 on the y-axis, then $a_1a_2 + b_1b_2$ is equal to :

(a) 2

(b) $\frac{1}{2}$

(c) (

(d) -1



Exercise-2: One or More than One Answer is/are Correct

1. A common tangent to the hyperbola $9x^2 - 16y^2 = 144$ and the circle $x^2 + y^2 = 9$ is/are:

(a)
$$y = \frac{3}{\sqrt{7}}x + \frac{15}{\sqrt{7}}$$

(b)
$$y = 3\sqrt{\frac{2}{\sqrt{7}}}x + \frac{25}{\sqrt{7}}$$

(c)
$$y = 2\sqrt{\frac{3}{7}}x + 15\sqrt{7}$$

(d)
$$y = -3\sqrt{\frac{2}{\sqrt{7}}}x + \frac{25}{\sqrt{7}}$$

2. Tangents are drawn to the hyperbola $x^2 - y^2 = 3$ which are parallel to the line 2x + y + 8 = 0. Then their points of contact is/are:

(b)
$$(2, -1)$$

(c)
$$(-2, -1)$$

3. If the line ax + by + c = 0 is normal to the curve xy = 1, then:

(a)
$$a > 0, b > 0$$

(b)
$$a > 0, b < 0$$

(c)
$$b < 0, a < 0$$

(d)
$$a < 0, b > 0$$

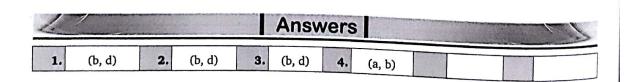
4. A circle cuts rectangular hyperbola xy = 1 in the points (x_r, y_r) , r = 1, 2, 3, 4 then:

(a)
$$y_1y_2y_3y_4 = 1$$

(b)
$$x_1 x_2 x_3 x_4 = 1$$

(c)
$$x_1x_2x_3x_4 = y_1y_2y_3y_4 = -1$$

(d)
$$y_1y_2y_3y_4 = 0$$



Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

A point P moves such that sum of the slopes of the normals drawn from it to the hyperbola xy = 16 is equal to the sum of the ordinates of the feet of the normals. Let 'P' lies on the curve C, then:

1. The equation of 'C' is:

(a)
$$x^2 = 4y$$

(b)
$$x^2 = 16y$$

(d) $y^2 = 8x$

(c)
$$x^2 = 12y$$

(d)
$$y^2 = 8x$$

2. If tangents are drawn to the curve C, then the locus of the midpoint of the portion of tangent intercepted between the co-ordinate axes, is:

(a)
$$x^2 = 4y$$

(b)
$$x^2 = 2y$$

(c)
$$x^2 + 2y = 0$$

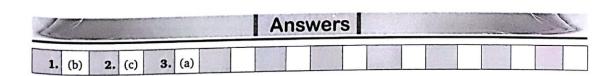
(d)
$$x^2 + 4y = 0$$

- 3. Area of the equilateral triangle, inscribed in the curve C, and having one vertex same as the vertex of C is:
 - (a) $768\sqrt{3}$

(b) 776√3

(c) 760√3

(d) None of these



Advanced Problems in Mathematics for JEE

312

Exercise-4: Subjective Type Problems

- 1. Let y = mx + c be a common tangent to $\frac{x^2}{16} \frac{y^2}{9} = 1$ and $\frac{x^2}{4} + \frac{y^2}{3} = 1$, then find the value of $m^2 + c^2$.
- 2. The maximum number of normals that can be drawn to an ellipse/hyperbola passing through a given point is:
- **3.** Tangent at P to rectangular hyperbola xy = 2 meets coordinate axes at A and B, then area of triangle OAB (where O is origin) is:

Line						Answe	rs		5
1.	8	2.	4	3.	4				

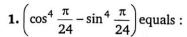
Trigonometry

- **22.** Compound Angles
- 23. Trigonometric Equations
- 24. Solution of Triangles
- 25. Inverse Trigonometric Functions

Chapter 22 - Compound Angles

COMPOUND ANGLES

Exercise-1: Single Choice Problems



(a)
$$\frac{1}{\sqrt{2}}$$

(b)
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$

(b)
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$
 (c) $\frac{\sqrt{6}+\sqrt{2}}{4}$ (d) $\frac{\sqrt{3}+1}{2}$

(d)
$$\frac{\sqrt{3}+1}{2}$$

2. If a $\sin x + b \cos(c + x) + b \cos(c - x) = \alpha$, $\alpha > a$, then the minimum value of $|\cos c|$ is:

(a) $\sqrt{\frac{\alpha^2 - a^2}{b^2}}$ (b) $\sqrt{\frac{\alpha^2 - a^2}{2b^2}}$ (c) $\sqrt{\frac{\alpha^2 - a^2}{3b^2}}$ (d) $\sqrt{\frac{\alpha^2 - a^2}{4b^2}}$

(a)
$$\sqrt{\frac{\alpha^2 - a^2}{b^2}}$$

(b)
$$\sqrt{\frac{\alpha^2 - a^2}{2b^2}}$$

(c)
$$\sqrt{\frac{\alpha^2-a^2}{3b^2}}$$

(d)
$$\sqrt{\frac{\alpha^2-a^2}{4b^2}}$$

3. If all values of $x \in (a, b)$ satisfy the inequality $\tan x \tan 3x < -1, x \in \left(0, \frac{\pi}{2}\right)$, then the maximum value (b-a) is:

(a)
$$\frac{\pi}{12}$$

(b)
$$\frac{\pi}{3}$$

(c)
$$\frac{\pi}{6}$$

(d)
$$\frac{\pi}{4}$$

4. $\sum_{n=0}^{\infty} \tan(rA) \tan((r+1)A)$ where $A = 36^{\circ}$ is:

(a)
$$-10 - \tan A$$

(b)
$$-10 + \tan A$$

(c)
$$-10$$

5. Let $f(x) = 2\csc 2x + \sec x + \csc x$, then minimum value of f(x) for $x \in \left(0, \frac{\pi}{2}\right)$ is:

(a)
$$\frac{1}{\sqrt{2}-1}$$

(b)
$$\frac{2}{\sqrt{2}-1}$$

(c)
$$\frac{1}{\sqrt{2}+1}$$

(d)
$$\frac{2}{\sqrt{2}+1}$$

6. The exact value of cosec 10° + cosec 50° - cosec 70° is:

7. If $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$, then the difference between the maximum and minimum values of u^2 is given by:

(a)
$$2(a^2+b^2)$$

(b)
$$2\sqrt{a^2+b^2}$$

(c)
$$(a+b)^2$$

(d)
$$(a-b)^2$$

316

8. If $u_n = \sin(n\theta) \sec^n \theta$, $v_n = \cos(n\theta) \sec^n \theta$, $n \in \mathbb{N}$, $n \neq 1$, then $\frac{v_n - v_{n-1}}{u_{n-1}} + \frac{1}{n} \frac{u_n}{v_n} = \frac{1}{n} \frac{u_n}{v_n}$

(a)
$$-\cot\theta + \frac{1}{n}\tan(n\theta)$$

(b)
$$\cot \theta + \frac{1}{n} \tan(n\theta)$$

(c)
$$\tan \theta + \frac{1}{n} \tan(n\theta)$$

(d)
$$-\tan\theta + \frac{\tan(n\theta)}{n}$$

9. If $a\cos^2 3\alpha + b\cos^4 \alpha = 16\cos^6 \alpha + 9\cos^2 \alpha$ is an identity, then

(a)
$$a = 1, b = 24$$

(b)
$$a = 3, b = 24$$

(c)
$$a = 4, b = 2$$
 (d) $a = 7, b = 18$

(d)
$$a = 7, b = 18$$

10. Maximum value of $\cos x (\sin x + \cos x)$ is equal to :

(a)
$$\sqrt{2}$$

(c)
$$\frac{\sqrt{2}+1}{2}$$

(d)
$$\sqrt{2} + 1$$

11. If $\frac{\sin A}{\sin B} = \frac{\sqrt{3}}{2}$ and $\frac{\cos A}{\cos B} = \frac{\sqrt{5}}{2}$, $0 < A, B < \frac{\pi}{2}$ then $\tan A + \tan B$ is equal to:

(a)
$$\sqrt{\frac{3}{5}}$$

(b)
$$\sqrt{\frac{5}{3}}$$

(c)
$$\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}$$

(c)
$$\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}}$$
 (d) $\frac{\sqrt{3} + \sqrt{5}}{\sqrt{3}}$

12. Let $0 \le \alpha, \beta, \gamma, \delta \le \pi$ where β and γ are not complementary such that

$$2\cos\alpha + 6\cos\beta + 7\cos\gamma + 9\cos\delta = 0$$

$$2\sin\alpha - 6\sin\beta + 7\sin\gamma - 9\sin\delta = 0$$

If $\frac{\cos(\alpha + \delta)}{\cos(\beta + \gamma)} = \frac{m}{n}$ where m and n are relatively prime positive numbers, then the value of

(m+n) is equal to:

13. If $-\pi < \theta < -\frac{\pi}{2}$, then $\left| \sqrt{\frac{1-\sin\theta}{1+\sin\theta}} + \sqrt{\frac{1+\sin\theta}{1-\sin\theta}} \right|$ is equal to :

(c)
$$2\sec\frac{\theta}{2}$$

(d)
$$-\sec\frac{\theta}{2}$$

14. If $A = \sum_{r=1}^{3} \cos \frac{2r\pi}{7}$ and $B = \sum_{r=1}^{3} \cos \frac{2^r\pi}{7}$, then:

(a)
$$A + B = 0$$

(b)
$$2A + B = 0$$

(c)
$$A + 2B = 0$$

(d)
$$A = B$$

15. In a $\triangle PQR$ (as shown in figure) if

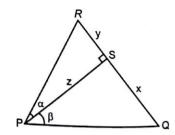
x:y:z=2:3:6, then the value of $\angle QPR$ is:

(a)
$$\frac{\pi}{6}$$

(b)
$$\frac{\pi}{4}$$

(c)
$$\frac{\pi}{3}$$

(d)
$$\frac{\pi}{2}$$



Compound Angles

317

16. If
$$A = \sum_{r=1}^{3} \cos \frac{2r\pi}{7}$$
 and $B = \sum_{r=1}^{3} \cos \frac{2^{r}\pi}{7}$, then:

- (c) A + 2B = 0
- (d) A-B=0

17. Let $f(x) = \sin x + 2\cos^2 x$; $\frac{\pi}{6} \le x \le \frac{2\pi}{3}$, then maximum value of f(x) is:

- (a) 1
- (c) 2

18. In $\triangle ABC$, $\angle C = \frac{2\pi}{3}$ then the value of $\cos^2 A + \cos^2 B - \cos A \cdot \cos B$ is equal to :

- (a) $\frac{3}{4}$
- (c) $\frac{1}{2}$

19. The number of solutions of the equation $4\sin^2 x + \tan^2 x + \cot^2 x + \csc^2 x = 6$ in $[0, 2\pi]$:

- (b) 2

20. If $\sin A$, $\cos A$ and $\tan A$ are in G.P., then $\cos^3 A + \cos^2 A$ is equal to :

- (d) none

21. Range of function $f(x) = \sin\left(x + \frac{\pi}{6}\right) + \cos\left(x - \frac{\pi}{6}\right)$ is:

(a) $[-\sqrt{2}, \sqrt{2}]$

(b) $[-\sqrt{2}(\sqrt{3}+1),\sqrt{2}(\sqrt{3}+1)]$

(c) $\left[-\frac{\sqrt{3}+1}{\sqrt{2}}, \frac{\sqrt{3}+1}{\sqrt{2}}\right]$

(d) $\left[-\frac{\sqrt{3}-1}{\sqrt{2}}, \frac{\sqrt{3}-1}{\sqrt{2}}\right]$

22. The value of $tan(log_2 6) \cdot tan(log_2 3) \cdot tan 1$ is always equal to :

- (a) $\tan(\log_2 6) + \tan(\log_2 3) + \tan 1$
- (b) $\tan(\log_2 6) \tan(\log_2 3) \tan 1$
- (c) $\tan(\log_2 6) \tan(\log_2 3) + \tan 1$
- (d) $\tan(\log_2 6) + \tan(\log_2 3) \tan 1$

23. In a triangle ABC, side BC = 3, AC = 4 and AB = 5. The value of $\sin A + \sin 2B + \sin 3C$ is equal

- (c) $\frac{64}{25}$
- (d) none

24. If $A+B+C=180^\circ$, then $\frac{\cos A \cos C + \cos (A+B) \cos (B+C)}{\cos A \sin C - \sin (A+B) \cos (B+C)}$ simplifies to:

- (a) $-\cot C$
- (b) 0
- (d) $\cot C$

25. If $\alpha + \gamma = 2\beta$ then the expression $\frac{\sin \alpha - \sin \gamma}{\cos \gamma - \cos \alpha}$ simplifies to :

- (a) tanβ
- (b) -tanβ
- (c) cot \beta
- (d) -cot β

318				I I Doublewe in	Mathematics for IFF
10.00	and property and the second states		Ac	ivancea Problems in I	Mathematics for JEE
26	• The product	$\left(\cos\frac{x}{2}\right)\cdot\left(\cos\frac{x}{4}\right)\cdot\left(\cos\frac{x}{4}\right)$	$\left(\frac{x}{3}\right)$ $\left(\cos\frac{x}{256}\right)$ is	s equal to:	
	(a) $\frac{\sin x}{128 \sin \frac{\pi}{2}}$	$\frac{x}{56}$ (b) $\frac{\sin x}{256\sin x}$	$\frac{x}{x}$ (c) $\frac{1}{256}$	$\frac{\sin x}{28\sin\frac{x}{128}} \qquad (d)$	$\frac{\sin x}{512\sin\frac{x}{512}}$
27	. The value of t		250	126	012
-,	$\sin 7\alpha + 6$	$\sin 5\alpha + 17 \sin 3\alpha + 12$	oin a _		
	sin 6a	$\frac{\sin 5\alpha + 17\sin 3\alpha + 12}{\cos 4\alpha + 12\sin 2\alpha}$	$\frac{\sin \alpha}{2}$, where $\alpha = \frac{\pi}{5}$	is equal to :	
	(a) $\frac{\sqrt{5}-1}{4}$	(b) $\frac{\sqrt{5}+1}{4}$	(c) $\frac{}{}$	$\frac{5+1}{2}$ (d)	$\frac{\sqrt{5}-1}{2}$
28	In a triangle	$ABC \text{ if } \sum \tan^2 A = \sum$	tan A tan R then la	rgest angle of the tri	angle in radian will
	be:		tan 71 tan 2, then ta	igest ungle of the tr	
	(a) $\frac{2\pi}{3}$	(b) $\frac{\pi}{3}$	(c) $\frac{\pi}{2}$	(d)	$\frac{3\pi}{4}$
29	. Which one of	the following values i	s not the solution o	of the equation	
		$ x $ + $\log_{ \cos x }(\sin x)$			
	(a) $\frac{7\pi}{4}$	(b) $\frac{11\pi}{4}$	(c) $\frac{3}{4}$	$\frac{\pi}{4}$ (d)	$\frac{3\pi}{8}$
30	Range of $f(x)$	$= \sin^6 x + \cos^6 x \text{ is}:$			
	(a) $\left[\frac{1}{4},1\right]$	(b) $\left[\frac{1}{4}, \frac{3}{4}\right]$	(c) $\left[\frac{3}{4}\right]$	$\left[\frac{3}{4},1\right]$ (d)	[1, 2]
31.	If $y = \frac{2 \operatorname{si}}{1 + \cos \alpha}$	$\frac{\sin \alpha}{\alpha + \sin \alpha}$, then $\frac{1 - \cos \alpha}{1 + \cos \alpha}$	$\frac{\alpha + \sin \alpha}{\sin \alpha}$ is equal t	o:	
	(a) $\frac{1}{y}$	(b) y	(c) 1	-y (d)	1+ y
32.	$If \frac{\tan^3 A}{1 + \tan^2 A} +$	$-\frac{\cot^3 A}{1+\cot^2 A} = p \sec A$	$\cos A + q \sin A \cos A$	s A, then:	
	(a) $p = 2, q =$	(b) $p = 1, q$	= 2 (c) p	=1, q=-2 (d)	p = 2, q = -1
33.	If θ lies in the	second quadrant. The	In the value of $\sqrt{\frac{1}{1}}$	$\frac{-\sin\theta}{+\sin\theta} + \sqrt{\frac{1+\sin\theta}{1-\sin\theta}}$	is equal to :
	(a) 2 sec θ	(b) −2 sec θ	(c) 2	$cosec \theta$ (d)	
34.	If $y = (\sin \theta + \cos \theta)$	$(\cos \theta)^2 + (\cos \theta + \sec \theta)$	$(\theta)^2$, then minimu	m value of y is:	
	(a) 7	(b) 8	(c) 9		none of these
35.		$-\log_3\cos x - \log_3(1 -$	200	(u)	none of these $\tan 2x$ is equal to

(b) $\frac{3}{2}$ (c) $\frac{2}{3}$

(d) 6

(wherever defined)

(a) -2

319

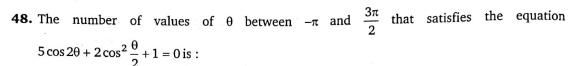
Con	poun	d Angles				
_	16 ai	= 0 + access 0 = 2 +	h		80. 1.	
36			hen the value of $\sin^8 \theta$ +			
	(a)		(b) 2 ⁴		28	(d) more than 2 ⁸
37			, then the value of tan ²	θ + c	ot $^2 \theta$ is equal to:	
		14		(b)	15	
	(c)		20		17	
38.			of $\log_{20}(3\sin x - 4\cos x -$	+ 15)	is equal to :	<u> </u>
	(a)		(b) 2	(c)		(d) 4
39.	If x	$^{2} + y^{2} = 9$ and $4a^{4}$	$^{2} + 9b^{2} = 16$, then maxim	num v	value of $4a^2x^2 + 9$	$b^2y^2 - 12abxy$ is:
	(a)		(b) 100	(c)	121	(d) 144
40.	If A	$= \sqrt{\sin 2 - \sin \sqrt{3}},$	$B = \sqrt{\cos 2 - \cos \sqrt{3}}$, then	whi	ch of the following	statement is true?
	(a)	A and B both are	real numbers and $A > B$			
	(b)	A and B both are	real numbers and $A < B$			
	(c)	Exactly one of A	and B is not real number			
	1000000	Both A and B are				
41.			dues of x such that			
	(:	$2^x + 2^{-x} - 2\cos x$	$(3^{x+\pi} + 3^{-x-\pi} + 2\cos x)$	$(5^{\pi-x})$	$+5^{x-\pi}-2\cos x$	= 0 is :
	(a)		(b) 2	(c)	3	(d) infinite
42.		equation $e^{\sin x} - e^{\sin x}$				
	000 00	infinite number o			no real roots	
		exactly one real r			exactly four real	
43.	If π	$< \alpha < \frac{3\pi}{2}$, then the	e expression $\sqrt{4\sin^4\alpha}$ +	sin ² 2	$2\alpha + 4\cos^2\left(\frac{\pi}{4} - \frac{\alpha}{2}\right)$	is equal to :
		A2-1 6 116 DECEMBER 18 19 11	(b) $2-4\cos\alpha$	(c)	2	(d) $2-4\sin\alpha$
44.	cos	$\frac{\pi}{12} - \sin\frac{\pi}{12} \left(\tan\frac{\pi}{12} \right)$	$\left(\frac{\pi}{12} + \cot \frac{\pi}{12}\right) =$			
	(a)	$\frac{1}{\sqrt{2}}$	(b) $4\sqrt{2}$	(c)	$\sqrt{2}$	(d) 2√2
45.	tan(100°) + tan(125°)	+ tan(100°) tan(125°) =	=		
	(a)	0	(b) $\frac{1}{2}$	(c)	-1	(d) 1
46.	If siz	$nx + \sin^2 x = 1, \text{ the}$	$\cos^8 x + 2\cos^6 x + \cos^6 x$	s ⁴ x :	=	
	(a)	2	(b) 1	(c)	3	(d) $\frac{1}{2}$
						2
47.	The	maximum value o	$f \log_5(3x + 4y)$, if $x^2 + 1$	y ² =	25 is :	

(c) 3

(d) 4

(a) 1

(b) 2



(d) 6

49. Given that $\sin \beta = \frac{4}{5}$, $0 < \beta < \pi$ and $\tan \beta > 0$, then $((3\sin(\alpha + \beta) - 4\cos(\alpha + \beta))\csc \alpha$ is equal to:

(a) 2 (b) 3 (c) 4 (d) 5 **50.** The maximum value of $\sin\left(x + \frac{\pi}{6}\right) + \cos\left(x + \frac{\pi}{6}\right)$ for $x \in \left[0, \frac{\pi}{2}\right]$ is attained at $x = \frac{\pi}{6}$

(a) $\frac{\pi}{12}$

51. The values of 'a' for which the equation $\sin x (\sin x + \cos x) = a$ has a real solution are

(a) $1 - \sqrt{2} \le a \le 1 + \sqrt{2}$

(b) $2 - \sqrt{3} \le a \le 2 + \sqrt{3}$

(c) $0 \le a \le 2 + \sqrt{3}$

(d) $\frac{1-\sqrt{2}}{2} \le a \le \frac{1+\sqrt{2}}{2}$

52. The value of $\cos 12^{\circ} \cos 24^{\circ} \cos 36^{\circ} \cos 48^{\circ} \cos 60^{\circ} \cos 72^{\circ} \cos 84^{\circ}$ is:

(a) $\frac{1}{64}$ (b) $\frac{1}{128}$ (c) $\frac{1}{256}$

53. The ratio of the maximum value to minimum value of $2\cos^2\theta + \cos\theta + 1$ is :

(a) 32:7

(b) 32:9

54. If all values of $x \in (a, b)$ satisfy the inequality $\tan x \tan 3x < -1$, $x \in \left(0, \frac{\pi}{2}\right)$, then the maximum

value (b-a) is:

55. If a regular polygon of 'n' sides has circum radius = R and inradius = r; then each side of polygon is:

(a) $(R+r)\tan\left(\frac{\pi}{2n}\right)$

(b) $2(R+r)\tan\left(\frac{\pi}{2n}\right)$

(c) $(R+r)\sin\left(\frac{\pi}{2n}\right)$

(d) $2(R+r)\cot\left(\frac{\pi}{2n}\right)$

56. The value of $\cos 12^{\circ} + \cos 84^{\circ} + \cos 156^{\circ} + \cos 132^{\circ}$ is:

(c) 1

(d) $\frac{1}{2}$

57. $\frac{\sin \theta}{\cos(3\theta)} + \frac{\sin(3\theta)}{\cos(9\theta)} + \frac{\sin(9\theta)}{\cos(27\theta)} + \frac{\sin(27\theta)}{\cos(81\theta)} =$

		without the same		
Compound Angles		ed towards.	Elizar and American	321
(a) $\frac{\sin(81\theta)}{2\cos(80\theta)\cos\theta}$		(b)	$\frac{\sin(80\theta)}{2\cos(81\theta)\cos\theta}$	
(c) $\frac{\sin(81\theta)}{\cos(80\theta)\cos\theta}$	· ·	(d)	$\frac{\sin(80\theta)}{\cos(81\theta)\cos\theta}$	
58. The value of $\left(\sin\frac{\pi}{9}\right)$	$4 + \sec \frac{\pi}{9}$ is:			
(a) $\frac{1}{2}$	(b) $\sqrt{2}$	(c)	1	(d) $\sqrt{3}$
59. If $\frac{dy}{dx} = \sin\left(\frac{x\pi}{2}\right)\cos(x)$	π), then y is strictly incre	easing	g in:	
(a) (3, 4)	(b) $\left(\frac{5}{2}, \frac{7}{2}\right)$	(c)	(2, 3)	(d) $\left(\frac{1}{2}, \frac{3}{2}\right)$
60. Smallest positive valu	e of θ satisfying the equa	tion ($8 \sin \theta \cos 2\theta \sin 3\theta$	$\cos 4\theta = \cos 6\theta$; is:
(a) $\frac{\pi}{18}$	(b) $\frac{\pi}{22}$	(c)	$\frac{\pi}{24}$	(d) None of these
61. If an angle <i>A</i> of a trian the equation	ngle ABC is given by 3 tar			
(a) $10x^2 - 2\sqrt{10}x + 3$	3 = 0	(b)	$10x^2 - 2\sqrt{10}x - 3$	3 = 0
(c) $10x^2 + 2\sqrt{10}x + 3$	3 = 0	(d)	$10x^2 + 2\sqrt{10}x - 3$	B = 0
62. If θ is an acute angle a	and $\tan \theta = \frac{1}{\sqrt{7}}$, then the	value	$e ext{ of } \frac{\csc^2 \theta - \sec^2 \theta}{\csc^2 \theta + \sec^2 \theta}$	$\frac{2}{2}\frac{\theta}{\theta}$ is:
(a) 3/4	(b) 1/2	(c)		(d) 5/4
63. If $2\cos\theta + \sin\theta = 1$, th	$ eq 1 \cos \theta + 6 \sin \theta $ equals			
(a) 1 or 2	(b) 2 or 3	(c)	2 or 4	(d) 2 or 6
	and grant t ells.		9	
64. If $\sin \theta + \csc \theta = 2$, t	hen the value of $\sin^{6}\theta$ +	cose	$c^{\circ}\theta$ is equal to:	
(a) 2	(b) 2 ⁴	(c)	2°	(d) more than 28
65. If $\tan^3 \theta + \cot^3 \theta = 52$	2, then the value of tan^2	9 + co	ot $^2 \theta$ is equal to:	
(a) 14	(b) 15	(c)	16	(d) 17
66. If ABCD is a cyclic qua	drilateral such that 12 ta	n A –	$5 = 0 \text{ and } 5 \cos B$	$+3 = 0$ then $\tan C + \tan D$
is equal to :				
(a) $\frac{21}{12}$	14		$-\frac{11}{12}$	(d) $-\frac{21}{12}$
67. If $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$ then $\sqrt{\tan \theta}$	$n^2 \theta - \sin^2 \theta$ is equal to:	<i>(</i>)	0 ci- 0	(d) sin 0 ton 0

(b) $-\tan\theta\sin\theta$

(a) $\tan \theta \sin \theta$

(c) $\tan \theta - \sin \theta$ (d) $\sin \theta - \tan \theta$

68. The value of $\frac{\sin 10^\circ + \sin 20^\circ}{\cos 10^\circ + \cos 20^\circ}$ equals

(a)
$$2 + \sqrt{3}$$

(b)
$$\sqrt{2}-1$$

(c)
$$2 - \sqrt{3}$$

(d)
$$\sqrt{2} + 1$$

69. The expression $\cos^6\theta + \sin^6\theta + 3\sin^2\theta\cos^2\theta$ simplifies to :

70. $\frac{\sin x + \cos x}{\sin x - \cos x} - \frac{\sec^2 x + 2}{\tan^2 x - 1} =$, where $x \in \left(0, \frac{\pi}{2}\right)$

(a)
$$\frac{1}{\tan x + 1}$$

(b)
$$\frac{2}{1 + \tan x}$$

(c)
$$\frac{2}{1 + \cot x}$$

(d)
$$\frac{2}{1-\tan x}$$

71. If $\frac{\cot \alpha + \cot (270^{\circ} + \alpha)}{\cot \alpha - \cot (270^{\circ} + \alpha)} - 2\cos(135^{\circ} + \alpha)\cos(315^{\circ} - \alpha) = \lambda\cos 2\alpha$, where $\alpha \in \left(0, \frac{\pi}{2}\right)$, then $\lambda = \frac{\pi}{2}$

72. The expression $\frac{\sin \alpha + \cos \alpha}{\cos \alpha - \sin \alpha} \tan \left(\frac{\pi}{4} + \alpha\right) + 1$, $\alpha \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ simplifies to :

(a)
$$\csc^2\left(\frac{\pi}{4} - \alpha\right)$$
 (b) $\sec^2\left(\frac{\pi}{4} - \alpha\right)$ (c) $\tan^2\left(\frac{\pi}{4} - \alpha\right)$ (d) $\cot^2\left(\frac{\pi}{4} - \alpha\right)$

(b)
$$\sec^2\left(\frac{\pi}{4} - \alpha\right)$$

(c)
$$\tan^2\left(\frac{\pi}{4} - \alpha\right)$$

(d)
$$\cot^2\left(\frac{\pi}{4} - \alpha\right)$$

73. The value of expression $\frac{\tan \alpha + \sin \alpha}{2\cos^2 \frac{\alpha}{2}}$ for $\alpha = \frac{\pi}{4}$ is:

74. $\cos 2\alpha - \cos 3\alpha - \cos 4\alpha + \cos 5\alpha$ simplifies to :

(a)
$$-4\sin\frac{\alpha}{2}\sin\alpha\cos\frac{7\alpha}{2}$$

(b)
$$4\sin\frac{\alpha}{2}\sin\alpha\cos\frac{7\alpha}{2}$$

(c)
$$-4\sin\frac{\alpha}{2}\sin\frac{7\alpha}{2}\cos\alpha$$

(d)
$$-4\sin\alpha\cos\frac{\alpha}{2}\sin\frac{7\alpha}{2}$$

75. If $\tan \gamma = \sec \alpha \sec \beta + \tan \alpha \tan \beta$, then the least value of $\cos 2\gamma$ is:

(b)
$$\frac{1}{2}$$

(c)
$$-\frac{1}{2}$$

76. If $\csc x = \frac{2}{\sqrt{3}}$, $\cot x = -\frac{1}{\sqrt{3}}$, $x \in [0, 2\pi]$, then $\cos x + \cos 2x + \cos 3x + \dots + \cos 100x = 0$

(a)
$$\frac{1}{2}$$

(b)
$$-\frac{1}{2}$$

(c)
$$-\frac{\sqrt{3}}{2}$$

(d)
$$\frac{\sqrt{3}}{2}$$

77. The value of $\sum_{r=0}^{10} \cos^3\left(\frac{\pi r}{3}\right)$ is equal to :

(a)
$$-\frac{7}{8}$$

(a)
$$-\frac{7}{8}$$
 (b) $-\frac{9}{8}$

(c)
$$-\frac{3}{8}$$

(d)
$$-\frac{1}{8}$$

70	The value of the expression	$1-4\sin 10^{\circ}\sin 70^{\circ}$	ic
/0.	The value of the dipression	2 sin 10°	13

79. If $x, y \in R$ and satisfy $(x + 5)^2 + (y - 12)^2 = 14^2$, then the minimum value of $x^2 + y^2$ is :

80. If θ_1 , θ_2 and θ_3 are the three values of $\theta \in [0, 2\pi]$ for which $\tan \theta = \lambda$ then the value of $\tan \frac{\theta_1}{3} \tan \frac{\theta_2}{3} + \tan \frac{\theta_2}{3} \tan \frac{\theta_3}{3} + \tan \frac{\theta_3}{3} \tan \frac{\theta_1}{3}$ is equal to (λ is a constant)

81. If $\tan \alpha = \frac{b}{a}$, a > b > 0 and if $0 < \alpha < \frac{\pi}{4}$, then $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}}$ is equal to :

- (a) $\frac{2\sin\alpha}{\sqrt{\cos 2\alpha}}$ (b) $\frac{2\cos\alpha}{\sqrt{\cos 2\alpha}}$ (c) $\frac{2\sin\alpha}{\sqrt{\sin 2\alpha}}$ (d) $\frac{2\cos\alpha}{\sqrt{\sin 2\alpha}}$

82. Minimum value of $3 \sin \theta + 4 \cos \theta$ in the interval $\left[0, \frac{\pi}{2}\right]$ is:

- (a) -5
- (b) 3

83. If $f(n) = \prod_{r=1}^{n} \cos r, n \in N$, then

(a) |f(n)| > |f(n+1)| (b) f(5) > 0 (c) f(4) > 0 (d) |f(n)| < |f(n+1)| **84.** If $\tan A + \sin A = p$ and $\tan A - \sin A = q$, then the value of $\frac{(p^2 - q^2)^2}{pq}$ is:

- (a) 16
- (c) 18

85. Let $t_1 = (\sin \alpha)^{\cos \alpha}$, $t_2 = (\sin \alpha)^{\sin \alpha}$, $t_3 = (\cos \alpha)^{\cos \alpha}$, $t_4 = (\cos \alpha)^{\sin \alpha}$, where $\alpha \in \left(0, \frac{\pi}{4}\right)$, then

which of the following is correct

(a) $t_3 > t_1 > t_2$ (b) $t_4 > t_2 > t_1$ (c) $t_4 > t_1 > t_2$ **86.** If $\cos A = \frac{3}{4}$, then the value of expression $32 \sin \frac{A}{2} \sin \frac{5A}{2}$ is equal to :

- (b) -11
- (d) 4

87. If $\cos(\alpha + \beta) + \sin(\alpha - \beta) = 0$ and $\tan \beta = \frac{1}{2009}$; then $\tan 3\alpha$ is :

- (d) 4

(a) 2 88. If $2^x = 3^y = 6^{-z}$, the value of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ is equal to :

- (a) 0
- (b) 1
- (c) 2
- (d) 3

324

89. Let α , β be such that $\pi < \alpha - \beta < 3\pi$

If $\sin \alpha + \sin \beta = -\frac{21}{65}$ and $\cos \alpha + \cos \beta = -\frac{27}{65}$ then the value of $\cos \left(\frac{\alpha - \beta}{2}\right)$ is:

- (b) $\frac{3}{\sqrt{130}}$
- (c) $\frac{6}{65}$

90. If $\mu = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta} + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}$ then the difference between maximum and minimum values of μ^2 is:

- (a) $2(a^2+b^2)$
- (b) $(a+b)^2$
- (c) $2\sqrt{a^2+b^2}$ (d) $(a-b)^2$

91. If $P = (\tan(3^{n+1}\theta) - \tan\theta)$ and $Q = \sum_{r=0}^{n} \frac{\sin(3^r\theta)}{\cos(3^{r+1}\theta)}$, then

- (d) 3P = Q

92. If $270^{\circ} < \theta < 360^{\circ}$, then find $\sqrt{2 + \sqrt{2(1 + \cos \theta)}}$ (c) 2P = Q

- (a) $-2\sin\left(\frac{\theta}{4}\right)$ (b) $2\sin\left(\frac{\theta}{4}\right)$ (c) $\pm 2\sin\frac{\theta}{4}$ (d) $2\cos\frac{\theta}{4}$

93. If $y = (\sin x + \cos x) + (\sin 4x + \cos 4x)^2$, then:

(a) $y > 0 \forall x \in R$

(b) $y \ge 0 \forall x \in R$

(c) $y < 2 + \sqrt{2} \forall x \in R$

(d) $y = 2 + \sqrt{2}$ for some $x \in R$

94. If $\cos x + \cos y + \cos z = \sin x + \sin y + \sin z = 0$ then $\cos(x - y) = \cos(x - y)$

- (a) 0

- (d) 1

95. The exact value of $\csc 10^{\circ} + \csc 50^{\circ} - \csc 70^{\circ}$ is :

- (b) 5
- (d) 8

96. If $270^{\circ} < \theta < 360^{\circ}$, then find $\sqrt{2 + \sqrt{2(1 + \cos \theta)}}$:

- (a) $-2\sin\left(\frac{\theta}{4}\right)$ (b) $2\sin\left(\frac{\theta}{4}\right)$ (c) $\pm 2\sin\frac{\theta}{4}$
- (d) $2\cos\frac{\theta}{4}$

Comp	ound	Angl	es																325
1	1							A	nsv	ver	s		10					()	1
1.	(c)	2.	(d)	3.	(a)	4.	(c)	5.	(b)	6.	(c)	7.	(d)	8.	(d)	9.	(a)	10.	(c)
11.	(c)	12.	(ъ)	13.	(b)	14.	(d)	15.	(b)	16.	(d)	17.	(c)	18.	(a)	19.	(d)	20.	(a)
21.	(c)	22.	(b)	23.	(b)	24.	(d)	25.	(c)	26.	(b)	27.	(c)	28.	(ъ)	29.	(d)	30.	(a)
31.	(b)	32.	(c)	33.	(b)	34.	(c)	35.	(c)	36.	(a)	37.	(a)	38.	(a)	39.	(d)	40.	(d)
41.	(b)	42.	(b)	43.	(c)	44.	(d)	45.	(d)	46.	(b)	47.	(ъ)	48.	(c)	49.	(d)	50.	(a)
51.	(d)	52.	(b)	53.	(a)	54.	(a)	55.	(b)	56.	(b)	57.	(ъ)	58.	(d)	59.	(ъ)	60.	(a)
61.	(d)	62.	(a)	63.	(d)	64.	(a)	65.	(a)	66.	(b)	67.	(ъ)	68.	(c)	69.	(b)	70.	(ъ)
71.	(c)	72.	(a)	73.	(d)	74.	(a)	75.	(d)	76.	(b)	77.	(d)	78.	(a)	79.	(b)	80.	(a)
81.	(b)	82.	(ъ)	83.	(a)	84.	(a)	85.	(b)	86.	(a)	87.	(ъ)	88.	(a)	89.	(a)	90.	(d)
91.	(a)	92.	(ъ)	93.	(c)	94.	(b)	95.	(c)	96.	(b)								

Exercise-2: One or More than One Answer is/are Correct

1. $\cot 12^{\circ} \cdot \cot 24^{\circ} \cdot \cot 28^{\circ} \cdot \cot 32^{\circ} \cdot \cot 48^{\circ} \cdot \cot 88^{\circ} = \dots$

(a) tan 45°

(c) 2tan 15° tan 45° tan 75°

(d) tan 15° tan 45° tan 75°

2. If the equation $\cot^4 x - 2\csc^2 x + a^2 = 0$ has at least one solution then possible integral values of a can be:

(a) -1

(b) 0

(c) 1

(d) 2

3. Which of the following is/are true?

(a) $\tan 1 > \tan^{-1} 1$

(b) $\sin 1 > \cos 1$

(c) tan 1 < sin 1

(d) $\cos(\cos 1) > \frac{1}{\sqrt{2}}$

4. Which of the following is/are +ve?

(a) $\log_{\sin 1} \tan 1$

(b) $\log_{\cos 1} (1 + \tan 3)$

(c) $\log_{\log_{10} 5} (\cos \theta + \sec \theta)$

(d) log_{tan15°} (2sin18°)

5. If $\sin \alpha + \cos \alpha = \frac{\sqrt{3} + 1}{2}$, $0 < \alpha < 2\pi$, then possible values $\tan \frac{\alpha}{2}$ can take is/are:

(a) $2-\sqrt{3}$

(c) 1

(d) $\sqrt{3}$

6. If $3\sin\beta = \sin(2\alpha + \beta)$, then:

(a) $(\cot \alpha + \cot(\alpha + \beta))(\cot \beta - 3\cot(2\alpha + \beta)) = 6$

(b) $\sin \beta = \cos(\alpha + \beta) \sin \alpha$

(c) $tan(\alpha + \beta) = 2tan \alpha$

(d) $2\sin\beta = \sin(\alpha + \beta)\cos\alpha$

7. If $\sin(x + 20^\circ) = 2\sin x \cos 40^\circ$ where $x \in (0, 90^\circ)$, then which of the following hold good?

(a) $\sec \frac{x}{2} = \sqrt{6} - \sqrt{2}$ (b) $\cot \frac{x}{2} = 2 + \sqrt{3}$ (c) $\tan 4x = \sqrt{3}$

(d) $\csc 4x = 2$

8. If $2(\cos(x-y) + \cos(y-z) + \cos(z-x)) = -3$, then:

(a) $\cos x \cos y \cos z = 1$

(b) $\cos x + \cos y + \cos z = 0$

(c) $\sin x + \sin y + \sin z = 1$

(d) $\cos 3x + \cos 3y + \cos 3z = 12\cos x \cos y \cos z$

9. If $0 < x < \frac{\pi}{2}$ and $\sin^n x + \cos^n x \ge 1$, then 'n' may belong to interval:

(b) [3, 4]

(c) $(-\infty, 2]$

(d) [-1,1]

10. If $x = \sin(\alpha - \beta) \cdot \sin(\gamma - \delta)$, $y = \sin(\beta - \gamma) \cdot \sin(\alpha - \delta)$, $z = \sin(\gamma - \alpha) \cdot \sin(\beta - \delta)$, then:

(a) x + y + z = 0

(b) $x^3 + y^3 + z^3 = 3xyz$

(c) x + y - z = 0

(d) $x^3 + y^3 - z^3 = 3xyz$

11. If $X = x \cos \theta - y \sin \theta$, $Y = x \sin \theta + y \cos \theta$ and $X^2 + 4XY + Y^2 = Ax^2 + By^2$, $0 \le \theta \le \pi/2$,	then:
(where A and B are constants)	

(a)
$$\theta = \frac{\pi}{6}$$

(b)
$$\theta = \frac{\pi}{4}$$

(c)
$$A = 3$$

(d)
$$B = -1$$

12. If
$$2a = 2 \tan 10^{\circ} + \tan 50^{\circ}$$
; $2b = \tan 20^{\circ} + \tan 50^{\circ}$

 $2c = 2\tan 10^{\circ} + \tan 70^{\circ}$; $2d = \tan 20^{\circ} + \tan 70^{\circ}$

Then which of the following is/are correct?

(a) a + d = b + c

(b)
$$a + b = c$$

(c) a > b < c > d

(d)
$$a < b < c < d$$

13. Which of the following real numbers when simplified are neither terminating nor repeating decimal?

(c)
$$\log_3 5 \cdot \log_5 6$$
 (d) $8^{-(\log_{27} 3)}$

(d)
$$8^{-(\log_{27} 3)}$$

14. If $\alpha = \sin x \cos^3 x$ and $\beta = \cos x \sin^3 x$, then:

(a)
$$\alpha - \beta > 0$$
; for all $x \text{ in } \left(0, \frac{\pi}{4}\right)$

(b)
$$\alpha - \beta < 0$$
; for all x in $\left(0, \frac{\pi}{4}\right)$

(c)
$$\alpha + \beta > 0$$
; for all $x \text{ in}\left(0, \frac{\pi}{2}\right)$

(d)
$$\alpha + \beta < 0$$
; for all $x \text{ in}\left(0, \frac{\pi}{2}\right)$

15. If $\frac{\pi}{2} < \theta < \pi$, then possible answers of $\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}$ is/are:

- (a) 2 cos θ
- (b) $2\sin\theta$
- (c) $-2\sin\theta$
- (d) $-2\cos\theta$

16. If $\cot^3 \alpha + \cot^2 \alpha + \cot \alpha = 1$ then which of the following is/are correct:

(a) $\cos 2\alpha \tan \alpha = 1$

(b) $\cos 2\alpha \cdot \tan \alpha = -1$

(c) $\cos 2\alpha - \tan 2\alpha = -1$

(d) $\cos 2\alpha - \tan 2\alpha = 1$

17. All values of $x \in \left(0, \frac{\pi}{2}\right)$ such that $\frac{\sqrt{3}-1}{\sin x} + \frac{\sqrt{3}+1}{\cos x} = 4\sqrt{2}$ are :

- (a) $\frac{\pi}{15}$
- (c) $\frac{11\pi}{36}$
- (d) $\frac{3\pi}{10}$

18. If $\alpha > \frac{1}{\sin^6 x + \cos^6 x} \forall x \in R$, then α can be:

- (c) 5
- (d) 6

19. If $x \in (0, \frac{\pi}{2})$ and $\sin x = \frac{3}{\sqrt{10}}$;

Let $k = \log_{10} \sin x + \log_{10} \cos x + 2\log_{10} \cot x + \log_{10} \tan x$ then the value of k satisfies

- (b) k+1=0
- (c) k-1=0
- (d) $k^2 1 = 0$

20. If A, B, C are angles of a triangle ABC and $\tan A \tan C = 3$; $\tan B \tan C = 6$ then which is(are) correct:

- (a) $A = \frac{\pi}{4}$
- (b) $\tan A \tan B = 2$ (c) $\frac{\tan A}{\tan C} = 3$ (d) $\tan B = 2 \tan A$

21. The value of $\frac{\sin x - \cos x}{\sin^3 x}$ is equal to :

(a)
$$\csc^2 x (1 - \cot x)$$

(b)
$$1 - \cot x + \cot^2 x - \cot^3 x$$

(c)
$$\csc^2 x - \cot x - \cot^3 x$$

(d)
$$\frac{1-\cot x}{\sin^2 x}$$

22. If $f(x) = \sin^2 x + \sin^2 \left(x + \frac{2\pi}{3} \right) + \sin^2 \left(x + \frac{4\pi}{3} \right)$ then:

(a)
$$f\left(\frac{\pi}{15}\right) = \frac{3}{2}$$

(a)
$$f\left(\frac{\pi}{15}\right) = \frac{3}{2}$$
 (b) $f\left(\frac{15}{\pi}\right) = \frac{2}{3}$ (c) $f\left(\frac{\pi}{10}\right) = \frac{3}{2}$ (d) $f\left(\frac{10}{\pi}\right) = \frac{2}{3}$

(c)
$$f\left(\frac{\pi}{10}\right) = \frac{3}{2}$$

(d)
$$f\left(\frac{10}{\pi}\right) = \frac{2}{3}$$

23. The range of $y = \frac{\sin 4x - \sin 2x}{\sin 4x + \sin 2x}$ satisfies

(a)
$$y \in \left(-\infty, \frac{1}{3}\right)$$
 (b) $y \in \left(\frac{1}{3}, 1\right)$

(b)
$$y \in (\frac{1}{3}, 1)$$

(c)
$$y \in (1,3)$$
 (d) $y \in (3,\infty)$

(d)
$$y \in (3, \infty)$$

24. If $\sqrt{2}\cos A = \cos B + \cos^3 B$ and $\sqrt{2}\sin A = \sin B - \sin^3 B$, then the possible value of $\sin(A - B)$ is/are

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{3}$$

(c)
$$-\frac{1}{2}$$
 (d) $-\frac{1}{3}$

(d)
$$-\frac{1}{3}$$

25. If $\alpha > \frac{1}{\sin^6 x + \cos^6 x} \, \forall x \in R$, then α can be

26. If $\cot^3 \alpha + \cot^2 \alpha + \cot \alpha = 1$ then which of the following is/are correct

(a)
$$\cos 2\alpha \tan \alpha = 1$$

(b)
$$\cos 2\alpha \cdot \tan \alpha = -1$$

(c)
$$\cos 2\alpha - \tan 2\alpha = -1$$

(d)
$$\cos 2\alpha - \tan 2\alpha = 1$$

Answers (a, b, d) (a, d) 2. (a, b, c) (b, d) 5. 1. (a, b) (a, b, c, d) (a, c, d) 9. (b, d) 10. (a, b) 7. (a, b) 11. (b, c, d) 12. (a, b, d) (b, d) 16. (a, c) 15. (b, d) 13. (b, c) 14. 17. (b, c) (b, d) 18. 20. (a, b, d) 21. (a, b, c, d) 22. (b, d) (a, c) 23. 19. (a, d) 24. (b, d) 26. (b, d) (c, d) 25.

Compound Angles 329

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Let $l = \sin \theta$, $m = \cos \theta$ and $n = \tan \theta$.

- **1.** If $\theta = 5$ radian, then:
 - (a) l > m
- (b) l < m
- (c) l=m
- (d) none of these

- **2.** If $\theta = -1042^{\circ}$, then :
 - (a) n > 1
- (b) n < 1
- (c) n = 1
- (d) nothing can be said

- **3.** If $\theta = 7$ radian, then:
 - (a) l + m > 0
- (b) l + m < 0
- (c) l + m = 0
- (d) nothing can be said

Paragraph for Question Nos. 4 to 6

Let a, b, c are respectively the sines and p, q, r are respectively the cosines of $\alpha, \alpha + \frac{2\pi}{3}$ and $\alpha + \frac{4\pi}{3}$, then:

- **4.** The value of (a + b + c) is:
 - (a) 0
- (b) $\frac{3}{4}$
- (c) 1
- (d) none of these

- **5.** The value of (ab + bc + ca) is :
 - (a) 0
- (b) $-\frac{3}{4}$
- (c) $-\frac{1}{2}$
- (d) -1

- **6.** The value of (qc rb) is :
 - (a) 0
- (b) $-\frac{\sqrt{3}}{2}$
- (c) $\frac{\sqrt{3}}{2}$
- (d) depends on α

Paragraph for Question Nos. 7 to 8

Consider a right angle triangle ABC right angle at B such that $AC = \sqrt{8 + 4\sqrt{3}}$ and AB = 1. A line through vertex A meet BC at D such that AB = BD. An arc DE of radius AD is drawn from vertex A to meet AC at E and another arc DF of radius CD is drawn from vertex C to meet AC at F. On the basis of above information, answer the following questions.

- 7. $\sqrt{\tan A + \cot C}$ is equal to :
 - (a) $\sqrt{3}$
- (b) 1
- (c) $2 + \sqrt{3}$
- (d) $\sqrt{3} + 1$

8. $\log_{AE} \left(\frac{AC}{CD} \right)$ is equal to :

(a) $\sqrt{2}$

(b) 1

(c) 0

(d) -1

Paragraph for Question Nos. 9 to 10

Consider a triangle ABC such that $\cot A + \cot B + \cot C = \cot \theta$. Now answer the following:

9. The possible value of θ is :

(c) 35°

(d) 45°

10. $\sin(A-\theta)\sin(B-\theta)\sin(C-\theta)=$:

(a) $\tan^3 \theta$

(c) $\sin^3 \theta$

(d) $\cos^3 \theta$

Paragraph for Question Nos. 11 to 12

Consider the function $f(x) = \frac{\sqrt{1 + \cos x} + \sqrt{1 - \cos x}}{\sqrt{1 + \cos x} - \sqrt{1 - \cos x}}$ then

11. If $x \in (\pi, 2\pi)$ then f(x) is:

(a) $\cot\left(\frac{\pi}{2} + \frac{x}{2}\right)$ (b) $\tan\left(\frac{\pi}{4} + \frac{x}{2}\right)$ (c) $\cot\left(\frac{\pi}{4} - \frac{x}{2}\right)$ (d) $\tan\left(\frac{\pi}{4} - \frac{x}{2}\right)$

12. If the value of $f\left(\frac{\pi}{3}\right) = a + b\sqrt{c}$ where $a, b, c \in N$ then the value of a + b + c is:

(a) 4

(b) 5

(c) 6

(d) 7

6								A	nsv	vers	S					m-m/c		5
1.	(b)	2.	(b)	3.	(a)	4.	(a)	5.	(b)	6.	(c)	7. (d)	8.	(b)	9.	(b)	10.	(c)
11.	(d)	12.	(c)										The same			(0)	10.	(0)

Compound Angles 331

Exercise-4: Matching Type Problems

1.

	Column-I		Column-II
(A)	If $(1 + \tan 5^\circ)(1 + \tan 10^\circ)(1 + \tan 45^\circ) = 2^{k+1}$ then 'k' equals	(P)	0
(B)	Sum of positive integral values of 'a' for which $a^2 - 6 \sin x - 5a \le 0 \ \forall \ x \in R$ is	(Q)	2
(C)	The minimum value of $\frac{\left(a + \frac{1}{a}\right)^4 - \left(a^4 + \frac{1}{a^4}\right) - 2}{\left(a + \frac{1}{a}\right)^2 + a^2 + \frac{1}{a^2}}$ is	(R)	5
(D)	Number of real roots of the equation $\sum_{k=1}^{3} (x-k)^2 = 0$ is	(S)	4
		(T)	5

2.

	Column-l		Column-II
(A)	Maximum value of $y = \frac{1 - \tan^2(\pi/4 - x)}{1 + \tan^2(\pi/4 - x)}$	(P)	1
(B)	Minimum value of $\log_3\left(\frac{5\sin x - 12\cos x + 26}{13}\right)$	(Q)	0
(C)	Minimum value of $y = -2\sin^2 x + \cos x + 3$	(R)	7/8
(D)	Maximum value of $y = 4\sin^2\theta + 4\sin\theta\cos\theta + \cos^2\theta$	(S)	5
		(T)	6

3.

	Column-l		Column-II
(A)	The value of $\frac{\cos 68^{\circ}}{\sin 56^{\circ} \sin 34^{\circ} \tan 22^{\circ}}$ equals to	(P)	16
(B)	The value of $(\cos 65^{\circ} + \sqrt{3} \sin 5^{\circ} + \cos 5^{\circ})^2 = \lambda \cos^2 25^{\circ}$; then value of λ be	(Q)	3

332

Advanced Problems in Mathematics for JEE

(C)	If $\cos A = \frac{3}{4}$; then the value of $\frac{32}{11} \sin \frac{A}{2} \sin \frac{5A}{2}$ is equal to	(R)	4
(D)	If $7 \log_a \frac{16}{15} + 5 \log_a \frac{25}{24} + 3 \log_a \frac{81}{80} = 8$ then the value of a^{16}	(S)	2
	equals to	(T)	1

4.

	Column-I		Column-II
(A)	If $\sin x + \cos x = \frac{1}{5}$; then $ 12\tan x $ is equal to	(P)	2
(B)	Number of values of θ lying in $(-2\pi, \pi)$ and satisfying $\cot \frac{\theta}{2} = (1 + \cot \theta)$ is	(Q)	6
(C)	If $2 - \sin^4 x + 8 \sin^2 x = \alpha$ has solution, then α can be	(R)	9
(D)	Number of integral values of x satisfying $\log_4(2x^2 + 5x + 27) - \log_2(2x - 1) \ge 0$	(S)	14
		(T)	16

5. Match the function given in **Column-I** to the number of integers in its range given in **Column-II.**

	Column-l		Column-II
(A)	$f(x) = 2\cos^2 x + \sin x - 8$	(P)	5
(B)	$f(x) = \sin^2 x + 3\cos^2 x + 5$	(Q)	4
(C)	$f(x) = 4\sin x \cos x - \sin^2 x + 3\cos^2 x$	(R)	3
(D)	$f(x) = \cos(\sin x) + \sin(\sin x)$	(S)	2

Answers

1.
$$A \rightarrow S$$
; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow P$

2.
$$A \rightarrow P$$
; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$

3.
$$A \rightarrow S$$
; $B \rightarrow Q$; $C \rightarrow T$; $D \rightarrow R$

4.
$$A \rightarrow R, T; B \rightarrow P; C \rightarrow P, Q, R; D \rightarrow Q$$

5.
$$A \rightarrow Q$$
; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow S$

Exercise-5: Subjective Type Problems

- 1. Let $P = \frac{\sin 80^{\circ} \sin 65^{\circ} \sin 35^{\circ}}{\sin 20^{\circ} + \sin 50^{\circ} + \sin 110^{\circ}}$, then the value of 24P is:
- 2. The value of expression $(1 \cot 23^\circ)(1 \cot 22^\circ)$ is equal to:
- 3. If $\tan A$ and $\tan B$ are the roots of the quadratic equation, $4x^2 7x + 1 = 0$ then evaluate $4\sin^2(A+B) 7\sin(A+B) \cdot \cos(A+B) + \cos^2(A+B)$.
- **4.** $A_1A_2A_3...A_{18}$ is a regular 18 sided polygon. B is an external point such that A_1A_2B is an equilateral triangle. If $A_{18}A_1$ and A_1B are adjacent sides of a regular n sided polygon, then n = 1
- 5. If $10\sin^4 \alpha + 15\cos^4 \alpha = 6$ and the value of $9\csc^4 \alpha + \beta\sec^4 \alpha$ is S, then find the value of $\frac{S}{25}$.
- **6.** The value of $\left(1 + \tan\frac{3\pi}{8}\tan\frac{\pi}{8}\right) + \left(1 + \tan\frac{5\pi}{8}\tan\frac{3\pi}{8}\right) + \left(1 + \tan\frac{7\pi}{8}\tan\frac{5\pi}{8}\right) + \left(1 + \tan\frac{9\pi}{8}\tan\frac{7\pi}{8}\right)$
- 7. If $\alpha = \frac{\pi}{7}$ then find the value of $\left(\frac{1}{\cos \alpha} + \frac{2\cos \alpha}{\cos 2\alpha}\right)$.
- **8.** Given that for $a, b, c, d \in R$, if $a \sec(200^\circ) c \tan(200^\circ) = d$ and $b \sec(200^\circ) + d \tan(200^\circ) = c$, then find the value of $\left(\frac{a^2 + b^2 + c^2 + d^2}{bd ac}\right) \sin 20^\circ$.
- **9.** The expression $2\cos\frac{\pi}{17} \cdot \cos\frac{9\pi}{17} + \cos\frac{7\pi}{17} + \cos\frac{9\pi}{17}$ simplifies to an integer *P*. Find the value of *P*.
- 10. If the expression $\frac{\sin \theta \sin 2\theta + \sin 3\theta \sin 6\theta + \sin 4\theta \sin 13\theta}{\sin \theta \cos 2\theta + \sin 3\theta \cos 6\theta + \sin 4\theta \cos 13\theta} = \tan k\theta, \text{ where } k \in \mathbb{N}. \text{ Find the value of } k.$
- **11.** Let $a = \sin 10^{\circ}$, $b = \sin 50^{\circ}$, $c = \sin 70^{\circ}$, then $8abc \left(\frac{a+b}{c}\right) \left(\frac{1}{a} + \frac{1}{b} \frac{1}{c}\right)$ is equal to
- **12.** If $\sin^3 \theta + \sin^3 \left(\theta + \frac{2\pi}{3}\right) + \sin^3 \left(\theta + \frac{4\pi}{3}\right) = a \sin b\theta$. Find the value of $\left|\frac{b}{a}\right|$.
- 13. If $\sum_{r=1}^{n} \left(\frac{\tan 2^{r-1}}{\cos 2^r} \right) = \tan p^n \tan q$, then find the value of (p+q).
- **14.** If $x = \sec \theta \tan \theta$ and $y = \csc \theta + \cot \theta$, then $y x xy = \cos \theta$
- **15.** If $\cos 18^{\circ} \sin 18^{\circ} = \sqrt{n} \sin 27^{\circ}$, then n =
- **16.** The value of $3(\sin 1 \cos 1)^4 + 6(\sin 1 + \cos 1)^2 + 4(\sin^6 1 + \cos^6 1)$ is equal to
- 17. If $x = \alpha$ satisfy the equation $3^{\sin 2x + 2\cos^2 x} + 3^{1-\sin 2x + 2\sin^2 x} = 28$, then $(\sin 2\alpha \cos 2\alpha)^2 + 8\sin 4\alpha$ is equal to:
- **18.** The least value of the expression $(\sin \theta + \csc \theta)^2 + (\cos \theta + \sec \theta)^2 \forall \theta \in R$ is
- 19. If $\tan 20^\circ + \tan 40^\circ + \tan 80^\circ \tan 60^\circ = \lambda \sin 40^\circ$, then λ is equal to

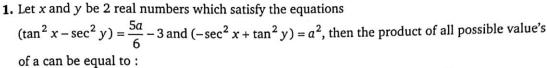
- **20.** If K° lies between 360° and 540° and K° satisfies the equation $1 + \cos 10x \cos 6x = 2\cos^2 8x + \sin^2 8x$, then $\frac{K}{10} =$
- **21.** If $\cos 20^{\circ} + 2\sin^2 55^{\circ} = 1 + \sqrt{2}\sin K^{\circ}$, $K \in (0, 90)$, then K = 1
- 22. The exact value of cosec 10°+ cosec 50°-cosec 70° is:
- 23. Let α be the smallest integral value of x, x > 0 such that $\tan 19x = \frac{\cos 96^\circ + \sin 96^\circ}{\cos 96^\circ \sin 96^\circ}$. The last digit of α is:
- **24.** Find the value of the expression $\frac{\sin 20^{\circ} (4\cos 20^{\circ} + 1)}{\cos 20^{\circ} \cos 30^{\circ}}$
- **25.** If the value of $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} + \cos \frac{7\pi}{7} = -\frac{l}{2}$. Find the value of l.
- **26.** If $\cos A = \frac{3}{4}$ and $k \sin\left(\frac{A}{2}\right) \sin\left(\frac{5A}{2}\right) = \frac{11}{8}$. Find k.
- **27.** Find the least value of the expression $3\sin^2 x + 4\cos^2 x$.
- **28.** If $\tan \alpha$ and $\tan \beta$ are the roots of equation $x^2 12x 3 = 0$, then the value of $\sin^2(\alpha + \beta) + 2\sin(\alpha + \beta)\cos(\alpha + \beta) + 5\cos^2(\alpha + \beta)$ is:
- **29.** The value of $\frac{\cos 24^{\circ}}{2 \tan 33^{\circ} \sin^2 57^{\circ}} + \frac{\sin 162^{\circ}}{\sin 18^{\circ} \cos 18^{\circ} \tan 9^{\circ}} + \cos 162^{\circ}$ is equal to :
- **30.** Find the value of $\tan \theta (1 + \sec 2\theta)(1 + \sec 4\theta)(1 + \sec 8\theta)$, when $\theta = \frac{\pi}{32}$.
- **31.** If λ be the minimum value of $y = (\sin x + \cos x)^2 + (\cos x + \sec x)^2 + (\tan x + \cot x)^2$ where $x \in R$. Find $\lambda 6$.

						Ansv	vers						1
1.	6	2.	2	3.	1	4.	9	5.	3	6.	0	7.	4
8.	2	9.	0	10.	9	11.	6	12.	4	13.	3	14.	1
15.	2	16.	13	17.	1	18.	9	19.	8	20.	45	21.	65
22.	6	23.	9	24.	2	25.	3	26.	4	27.	3	28.	2
29.	2	30.	1	31.	7								

Chapter 23 - Trigonometric Equations

TRIGONOMETRIC EQUATIONS

Exercise-1: Single Choice Problems



- (a) 0

- (d) $\frac{-3}{2}$

2. The general solution of the equation $\tan^2(x+y) + \cot^2(x+y) = 1 - 2x - x^2$ lie on the line is:

- (a) x = -1
- (b) x = -2
- (c) y = -1

3. General solution of the equation $\sin x + \cos x = \min_{\alpha \in R} \{1, \alpha^2 - 4\alpha + 6\} \text{ is :}$

(a)
$$\frac{n\pi}{2} + (-1)^n \frac{\pi}{4}$$

(b)
$$2n\pi + (-1)^n \frac{\pi}{4}$$

(c)
$$n\pi + (-1)^{n+1} \frac{\pi}{4}$$

(d)
$$n\pi + (-1)^n \frac{\pi}{4} - \frac{\pi}{4}$$

(where $n \in I$, I represent set of integers)

4. The number of solutions of the equation

- (d) 4

5. Number of solution of tan(2x) = tan(6x) in $(0, 3\pi)$ is :

- (d) None of these

6. The number of values of x in the interval [0, 5π] satisfying the equation $3\sin^2 x - 7\sin x + 2 = 0$

- (a) 0
- (b) 2
- (c) 6
- (d) 8

Advanced Problems in Mathematics for JEE

336

19. The smallest positive value of p for which the equation $\cos(p\sin x) = \sin(p\cos x)$ has solution in

(a)
$$\frac{\pi}{\sqrt{2}}$$

(b)
$$\frac{\pi}{2}$$

(c)
$$\frac{\pi}{2\sqrt{2}}$$

(d)
$$\frac{3\pi}{2\sqrt{2}}$$

20. The total number of ordered pairs (x, y) satisfying |x| + |y| = 2 and $\sin\left(\frac{\pi x^2}{3}\right) = 1$ is :

(a) 2

21. The complete set of values of $x, x \in \left(-\frac{\pi}{2}, \pi\right)$ satisfying the inequality $\cos 2x > |\sin x|$ is :

(a)
$$\left(-\frac{\pi}{6}, \frac{\pi}{6}\right)$$

(b)
$$\left(-\frac{\pi}{2}, \frac{\pi}{6}\right) \cup \left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$$

(c)
$$\left(-\frac{\pi}{2}, -\frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, \pi\right)$$

(d)
$$\left(-\frac{\pi}{6}, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, \pi\right)$$

22. The total number of solution of the equation $\sin^4 x + \cos^4 x = \sin x \cos x$ in $[0, 2\pi]$ is:

23. Number of solution of the equation $\sin \frac{5x}{2} - \sin \frac{x}{2} = 2$ in the interval [0, 2π], is :

(d) Infinite

(a) 1 (b) 2 (c) 0 24. In the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. The equation $\log_{\sin\theta}\cos 2\theta = 2$ has

(a) No solution

(b) One solution

(c) Two solution

(d) Infinite solution

25. If α and β are 2 distinct roots of equation $a\cos\theta + b\sin\theta = C$ then $\cos(\alpha + \beta) = C$

(a) $\frac{2ab}{a^2 + b^2}$ (b) $\frac{2ab}{a^2 - b^2}$ (c) $\frac{a^2 + b^2}{a^2 - b^2}$ (d) $\frac{a^2 - b^2}{a^2 + b^2}$

Answers (b) 6. 7. (d) 5. (c) 1. (c) 2. (a) (d) (a) (c) 9. (c) 10. (c) (b) 15. () 16. (b) 17. (d) 13. (a) 14. 18. (a) 19. (a) (c) 20. (b) (d) 24. (b) 25. 21. (d) 22. 23. (c)

Exercise-2: One or More than One Answer is/are Correct

1. If $2\cos\theta + 2\sqrt{2} = 3\sec\theta$ where $\theta \in (0, 2\pi)$ then which of the following can be correct?

(a)
$$\cos \theta = \frac{1}{\sqrt{2}}$$

(b)
$$\tan \theta = 1$$

(c)
$$\sin \theta = -\frac{1}{\sqrt{2}}$$

(d)
$$\cot \theta = -1$$

2. In a triangle ABC if tan C < 0 then:

(a)
$$\tan A \tan B < 1$$

(b)
$$\tan A \tan B > 1$$

(c)
$$\tan A + \tan B + \tan C < 0$$

(d)
$$\tan A + \tan B + \tan C > 0$$

3. The inequality $4\sin 3x + 5 \ge 4\cos 2x + 5\sin x$ is true for $x \in$

(a)
$$\left[-\pi, \frac{3\pi}{2}\right]$$

(b)
$$\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

(c)
$$\left[\frac{5\pi}{8}, \frac{13\pi}{8}\right]$$

(c)
$$\left[\frac{5\pi}{8}, \frac{13\pi}{8}\right]$$
 (d) $\left[\frac{23\pi}{14}, \frac{41\pi}{14}\right]$

4. The least difference between the roots of the equation $4\cos x(2-3\sin^2 x) + \cos 2x + 1 = 0$ $\forall x \in R \text{ is } :$

(a) equal to
$$\frac{\pi}{2}$$
 (b) $> \frac{\pi}{10}$

(b)
$$> \frac{\pi}{10}$$

(c)
$$<\frac{\pi}{2}$$

(d)
$$<\frac{\pi}{3}$$

5. The equation $\cos x \cos 6x = -1$:

(a) has 50 solutions in $[0, 100\pi]$

(b) has 3 solutions in $[0, 3\pi]$

(c) has even number of solutions in $(3\pi, 13\pi)$ (d) has one solution in $\left|\frac{\pi}{2}, \pi\right|$

6. Identify the correct options :

(a)
$$\frac{\sin 3\alpha}{\cos 2\alpha} > 0$$
 for $\alpha \in \left(\frac{3\pi}{8}, \frac{23\pi}{48}\right)$

(b)
$$\frac{\sin 3\alpha}{\cos 2\alpha} < 0 \text{ for } \alpha \in \left(\frac{13\pi}{48}, \frac{14\pi}{48}\right)$$

(c)
$$\frac{\sin 2\alpha}{\cos \alpha} < 0$$
 for $\alpha \in \left(-\frac{\pi}{2}, 0\right)$

(d)
$$\frac{\sin 2\alpha}{\cos \alpha} > 0$$
 for $\alpha \in \left(\frac{13\pi}{48}, \frac{14\pi}{48}\right)$

7. The equation $\sin^4 x + \cos^4 x + \sin 2x + k = 0$ must have real solutions if:

(a)
$$k = 0$$

(b)
$$|k| \le \frac{1}{2}$$

(c)
$$-\frac{3}{2} \le k \le \frac{1}{2}$$

(d)
$$-\frac{1}{2} \le k \le \frac{3}{2}$$

8. Let $f(\theta) = \left(\cos\theta - \cos\frac{\pi}{8}\right) \left(\cos\theta - \cos\frac{3\pi}{8}\right) \left(\cos\theta - \cos\frac{5\pi}{8}\right) \left(\cos\theta - \cos\frac{7\pi}{8}\right)$ then:

(a) maximum value of $f(\theta) \forall \theta \in R$ is $\frac{1}{4}$

(b) maximum value of $f(\theta) \forall \theta \in R$ is $\frac{1}{8}$

(c)
$$f(0) = \frac{1}{8}$$

(d) Number of principle solutions of $f(\theta) = 0$ is 8

9. If $\frac{\sin^2 2x + 4\sin^4 x - 4\sin^2 x \cdot \cos^2 x}{4 - \sin^2 2x - 4\sin^2 x} = \frac{1}{9}$ and $0 < x < \pi$. Then the value of x is:

(a) $\frac{\pi}{3}$

(b) $\frac{\pi}{6}$

(c) $\frac{2\pi}{3}$

(d) $\frac{5\pi}{6}$

10. The possible value(s) of ' θ ' satisfying the equation

 $\sin^2 \theta \tan \theta + \cos^2 \theta \cot \theta - \sin 2\theta = 1 + \tan \theta + \cot \theta$

where $\theta \in [0, \pi]$ is/are:

(a) $\frac{\pi}{4}$

(b) π

(c) $\frac{7\pi}{12}$

(d) None of these

11. If $\sin \theta + \sqrt{3} \cos \theta = 6x - x^2 - 11$, $0 \le \theta \le 4\pi$, $x \in R$ holds for

(a) no values of x and θ

(b) one value of x and two values of θ

(c) two values of x and two values of θ

(d) two pairs of values of (x, θ)

11				Ans	wer	s				
1. (a, b, c, d)	2.	(a, c)	3.	(a, b, c, d)	4.	(b, c, d)	5.	(a, c, d)	6.	(a, b, c, d)
7. (a, b, c)	8.	(b, c, d)	9.	(b, d)	10.	(c)	11.	(b, d)		1

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

Consider f, g and h be three real valued function defined on R. Let $f(x) = \sin 3x + \cos x$, $g(x) = \cos 3x + \sin x$ and $h(x) = f^{2}(x) + g^{2}(x)$

- **1.** The length of a longest interval in which the function y = h(x) is increasing, is:
 - (a) $\frac{\pi}{8}$

- **2.** General solution of the equation h(x) = 4, is:
 - (a) $(4n+1)\frac{\pi}{8}$
- (b) $(8n+1)\frac{\pi}{8}$ (c) $(2n+1)\frac{\pi}{4}$ (d) $(7n+1)\frac{\pi}{4}$

[where $n \in I$]

- **3.** Number of point(s) where the graphs of the two function, y = f(x) and y = g(x) intersects in $[0, \pi]$, is:
 - (a) 2
- (b) 3
- (c) 4
- (d) 5

	Answers	
1. (b) 2. (a) 3. (c)		

Trigonometry Equation

341

Exercise-4: Matching Type Problems

1.

	Column-I		Column-II
(A)	If $\sin x + \cos x = \frac{1}{5}$; then $ 12 \tan x $ is equal to	(P)	2
(B)	Number of values of θ lying in $(-2\pi, \pi)$ and satisfying $\cot \frac{\theta}{2} = (1 + \cot \theta)$ is	(Q)	6
(C)	If $2 - \sin^4 x + 8 \sin^2 x = \alpha$ has solution, then α can be	(R)	9
(D)	Number of integral values of x satisfying $\log_4(2x^2 + 5x + 27) - \log_2(2x - 1) \ge 0$	(S)	14
		(T)	16

2.

	· Column-I		Column-II
(A)	If $x, y \in [0, 2\pi]$, then total number of ordered pair (x, y) satisfying $\sin x \cos y = 1$ is	(P)	4
(B)	If $f(x) = \sin x - \cos x - kx + b$ decreases for all real values of x , then $2\sqrt{2}k$ may be	(Q)	0
(C)	The number of solution of the equation $\sin^{-1}(x^2-1) + \cos^{-1}(2x^2-5) = \frac{\pi}{2}$ is	(R)	2
(D)	The number of ordered pair (x, y) satisfying the equation $\sin x + \sin y = \sin(x + y)$ and $ x + y = 1$ is	(S)	3
		(T)	6

3.

1	Column-l		Column-II
(A)	Minimum value of $y = 4\sec^2 x + \cos^2 x$ for permissible real values of x is equal to	(P)	2
(B)	If m, n are positive integers and $m + n\sqrt{2} = \sqrt{41 + 24\sqrt{2}}$ then $(m+n)$ is equal to:	(Q)	7

342

Advanced Problems in Mathematics for JER

(C)	Number of solutions of the equation:	(R)	4
	$\log_{\left(\frac{9x-x^2-14}{7}\right)}(\sin 3x - \sin x) = \log_{\left(\frac{9x-x^2-14}{7}\right)}\cos 2x$ is equal to:		
(D)	Consider an arithmetic sequence of positive integers. If the sum of the first ten terms is equal to the 58th term, then the least possible value of the first term is equal to:	(S)	5
		(T)	3

Answers

```
1. A \rightarrow R, T; B \rightarrow P; C \rightarrow P, Q, R; D \rightarrow Q
```

2.
$$A \rightarrow S$$
; $B \rightarrow P, T$; $C \rightarrow R$; $D \rightarrow T$

3.
$$A \rightarrow S$$
; $B \rightarrow Q$; $C \rightarrow P$; $D \rightarrow R$

Exercise-5: Subjective Type Problems

- 1. Find the number of solutins of the equations $(\sin x 1)^3 + (\cos x 1)^3 + (\sin x)^3 = (2\sin x + \cos x 2)^3$ in $[0, 2\pi]$.
- 2. If $x + \sin y = 2014$ and $x + 2014\cos y = 2013$, $0 \le y \le \frac{\pi}{2}$, then find the value of [x + y] 2005 (where [·] denotes greatest integer function)
- **3.** The complete set of values of x satisfying $\frac{2\sin 6x}{\sin x 1} < 0$ and $\sec^2 x 2\sqrt{2} \tan x \le 0$ in $\left(0, \frac{\pi}{2}\right)$ is $[a, b) \cup (c, d]$, then find the value of $\left(\frac{cd}{ab}\right)$.
- **4.** The range of value's of k for which the equation $2\cos^4 x \sin^4 x + k = 0$ has at least one solution is $[\lambda, \mu]$. Find the value of $(9\mu + \lambda)$.
- **5.** The number of points in interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, where the graphs of the curves $y = \cos x$ and $y = \sin 3x, -\frac{\pi}{2} \le x \le \frac{\pi}{2}$ intersects is
- **6.** The number of solutions of the system of equations :

$$2\sin^2 x + \sin^2 2x = 2$$
$$\sin 2x + \cos 2x = \tan x$$

in [0, 4π] satisfying $2\cos^2 x + \sin x \le 2$ is:

- 7. If the sum of all the solutions of the equation $3\cot^2\theta + 10\cot\theta + 3 = 0$ in $[0, 2\pi]$ is $k\pi$ where $k \in I$, then find the value of k.
- **8.** If the sum of all values of θ , $0 \le \theta \le 2\pi$ satisfying the equation $(8\cos 4\theta 3)(\cot \theta + \tan \theta 2)(\cot \theta + \tan \theta + 2) = 12$ is $k\pi$, then k is equal to:
- 9. Find the number of solutions of the equation $2\sin^2 x + \sin^2 2x = 2$; $\sin 2x + \cos 2x = \tan x$ in $[0, 4\pi]$ satisfying the condition $2\cos^2 x + \sin x \le 2$.

1		La Company				Ansv	vers	3					1
1.	5	2.	9	3.	6	4.	7	5.	3	6.	8	7.	5
8.	8	9.	8			107							

Exercise-1: Single Choice Problems

1.	In a $\triangle ABC$ if $9(a^2 + b^2)$	2) = $17c^2$ then the value	of the expression $\frac{\cot A}{A}$	$\frac{A + \cot B}{\cot C}$ is:
	(a) $\frac{13}{4}$	(b) $\frac{7}{4}$	(c) $\frac{5}{4}$	(d) $\frac{9}{4}$
2.	Let H be the orthocer incircle of $\triangle CHB$ is :	nter of triangle ABC, the	n angle subtended by	side BC at the centre of
	(a) $\frac{A}{2} + \frac{\pi}{2}$	$(b) \frac{B+C}{2} + \frac{\pi}{2}$	$(c) \frac{B-C}{2} + \frac{\pi}{2}$	(d) $\frac{B+C}{2}+\frac{\pi}{4}$
2	Circum radius of a A A	DC is 2 series les Obestes		¥ 12 22 22 22 22 22 22 22 22 22 22 22 22

3. Circum radius of a $\triangle ABC$ is 3 units; let O be the circum centre and H be the orthocentre then the value of $\frac{1}{64}(AH^2 + BC^2)(BH^2 + AC^2)(CH^2 + AB^2)$ equals:

	(a)		(b)	-		27 ⁶	(d) 81 ⁴
4.			of a	triangle ABC	are in arit	hmetic	progression. If $2b^2 = 3c^2$ then th
	angi	e A is:					
	(a)	15°	(b)	60°	(c)	75°	(4) 000

5. In a triangle ABC, if $\tan \frac{A}{2} \tan \frac{C}{2} = \frac{1}{3}$ and ac = 4, then the least value of b is:

(notation have their usual meaning)

(a) 1 (b) 2 (c) 4 (d) 6
6. In a triangle ABC the expression
$$a \cos B \cos C + b \cos C \cos A + c \cos A \cos B$$
 equals to :
(a) $\frac{rs}{R}$ (b) $\frac{r}{sR}$ (c) $\frac{R}{rs}$ (d) $\frac{Rs}{r}$

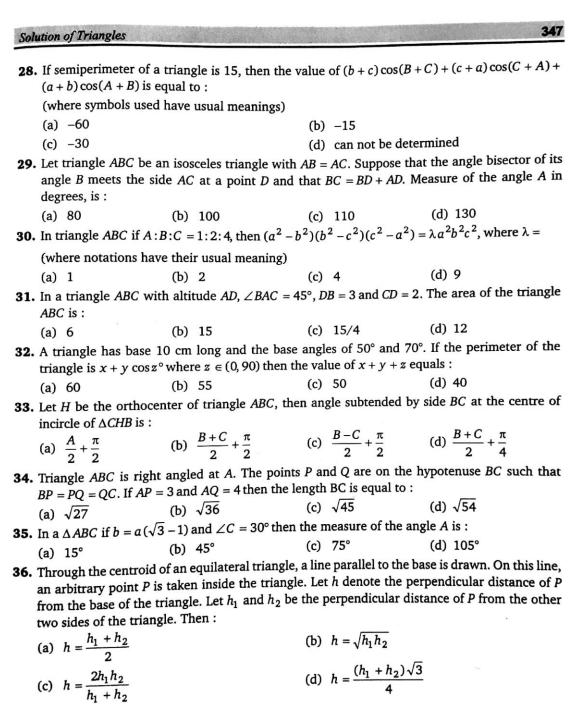
7. The set of real numbers a such that $a^2 + 2a$, 2a + 3, $a^2 + 3a + 8$ are the sides of a triangle, is:

(a)
$$(0, \infty)$$
 (b) $(5, 8)$ (c) $\left(-\frac{11}{3}, \infty\right)$ (d) $(5, \infty)$

www.jeebooks.in

Solution of To	riangles					345
		$\angle C = \frac{\pi}{4} \operatorname{let} D \operatorname{divide} B$	C inte	ernally in the ratio	$0.1:3$, then $\frac{\sin(1)}{\sin(1)}$	$\frac{(\angle BAD)}{(\angle CAD)}$ is
equal to	·				G	
(a) $\frac{1}{\sqrt{6}}$	(t	$\frac{1}{3}$	(c)	$\frac{1}{\sqrt{3}}$	(d) $\frac{\sqrt{2}}{3}$	
9. Let AD, I	BE, CF be the leng	ths of internal bisect	tors of	angles A, B, C res	pectively of trian	ngle ABC.
Then the	e harmonic mear	of $AD \sec \frac{A}{2}$, $BE \sec \frac{A}{2}$	$\frac{B}{2}$, CF	$\sec\frac{C}{2}$ is equal to	:	
(a) Hai	rmonic mean of s	ides of $\triangle ABC$	(b)	Geometric mean	of sides of ΔAl	3C
	thmetic mean of s			Sum of reciproca	als of the sides of	ΔABC
		$+ c$ and $A - C = 90^\circ$				
		d have usual meanin		=	-/5	
(a) $\frac{\sqrt{7}}{5}$	(1	$\frac{\sqrt{5}}{8}$	(c)	$\frac{\sqrt{7}}{4}$	(d) $\frac{\sqrt{5}}{3}$	
11. In a tria	ngle <i>ABC</i> , if 2a c	$\cos\left(\frac{B-C}{2}\right) = b + c, \text{ the}$	en sec	A is equal to :	[8]	
(All sym	ibols used have u	sual meaning in a tr	iangle	.)		
(a) $\frac{2}{\sqrt{3}}$	(1	o) $\sqrt{2}$	(c)	2	(d) 3	
12. Triangle	ABC has $BC = 1$	and $AC = 2$, then ma	aximu	m possible value o	of $\angle A$ is:	
(a) $\frac{\pi}{6}$	(1	$\frac{\pi}{4}$	(c)	$\frac{\pi}{3}$	(d) $\frac{\pi}{2}$	
13. $\Delta I_1 I_2 I_3$	is an excentral tr	iangle of an equilate	ral tria	ingle ΔABC such t	$hat I_1 I_2 = 4 uni$	t, if ΔDEF
is pedal	triangle of ΔABC	T, then $\frac{Ar(\Delta I_1 I_2 I_3)}{Ar(\Delta DEF)}$	=			
(a) 16	ብ) 4	(c)		(d) 1	
14. Let ABC	be a triangle wit	$h \angle BAC = \frac{2\pi}{3}$ and AB	B = x s	such that (AB)(AC	() = 1. If x varies	then the
1	accible length 0	f the internal angle b	oisecto	or AD equals :		
	possible length of		(b)	1		
(a) $\frac{1}{3}$						
(c) $\frac{2}{3}$				$\frac{\sqrt{2}}{3}$		
15. In an eq	uilateral triangle	r, R and r 1 form (wh	ere sy	mbols used have	usual meaning)	
(a) an	AP (t	a G.P.	(c)	an H.P.	(d) none of t	hese
16. In ∆ <i>ABC</i>	$\sin \frac{\sin A}{\sin C} = \frac{\sin(A)}{\sin(B)}$	$\frac{-B}{-C}$, then a^2, b^2, c^2	are i	ı:		
(a) A.P.) G.P.	(c)	H.P.	(d) none of th	iese

Advanced Problems in Mathematics for JEE



37. The angles A, B and C of a triangle ABC are in arithmetic progression. AB = 6 and BC = 7. Then AC is:

(a) $\sqrt{41}$

41

(b) √39

(c) $\sqrt{42}$

(d) $\sqrt{43}$

348

Advanced Problems in Mathematics for JEE

38.	In $\triangle ABC$, If $A-B$	= 120° and R =	8r, then the value	of $\frac{1 + \cos C}{1 - \cos C}$ equal	s:
	(All symbols used (a) 12	have their usua	l meaning in a tria (c)	angle) 21	(d) 31
39.	The line CD binner	sides CB and CA	of a triangle ABC	then the length of	1 b and the angle C is $\frac{2\pi}{3}$.
	The line CD bisects	s the angle C an	d meets AB at D . 1	ah	ab
	(a) $\frac{1}{a+b}$	(b) $\frac{a+b}{a+b}$	(c)	$\frac{ab}{2(a+b)}$	(d) $\frac{1}{a+b}$
40.	In $\triangle ABC$, angle A equals:	is 120°, BC +	CA = 20 and $AB +$	BC = 21, then the	e length of the side <i>BC</i> ,
	(a) 13	(b) 15	(c)		(d) 19
41.	A triangle has side meet the other two	s 6, 7, 8. The lin o sides at <i>P</i> and	e through its incer Q. The length of t	itre parallel to the he segment <i>PQ</i> is	shortest side is drawn to
	(a) $\frac{12}{5}$	(b) $\frac{15}{4}$	(c)	30 7	(d) $\frac{33}{9}$
	The perimeter of a greater than:	$\triangle ABC$ is 48 cm a	and one side is 20 o	cm. Then remaining	ng sides of $\triangle ABC$ must be
	(a) 8 cm	(b) 9 cm		12 cm	475 12W
		ABC, (where sy			then r , R and r_1 form :
	(a) an A.P.			a G.P.	
	(c) an H.P.		(d)	neither an A.P., C	G.P. nor H.P.
	The expression $\frac{(a)}{a}$	-	D C		
	(a) $\cos^2 A$			$\cos A \cos B \cos C$	(d) $\sin A \sin B \sin C$
	(where symbols us				
1	the equation :				lius, then $\cos A$ is root of
	(a) $x^2 - x - 8 = 0$	(b) $8x^2 -$	8x + 1 = 0 (c)	$x^2-x-4=0$	(d) $4x^2 - 4x + 1 = 0$
1 6. 1	A is the orthocentr then orthocenter of	The of $\triangle ABC$ and $\triangle ABC$ is :	<i>D</i> is reflection poi	nt of A w.r.t. perp	endicular bisector of BC,
	(a) D	(b) C	(c)	В	(d) A
7. I	fa, b, c are sides of	of a scalene tria	ngle, then the val	ue of determinan	$\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$ is always:
((a) ≥ 0	(b) > 0	(c)	≤-1	(d) < 0
8. I	n a triangle ABC	if A:B:C=1:	2:4, then $(a^2 -$	b^2) (b^2-c^2) $(c^2$	(d) < 0 $-a^2$) = $\lambda a^2 b^2 c^2$, where
2	.=:				, , , , , ,

record	R. WOLLOW	si mikamen	NAME OF THE PERSON	SINATURED	SURRECTORS	TOWNS TO
C	Just	ion	of	Tric	ma	100

(a) 1

(b) 2

(c) 3

(d) $\frac{1}{3}$

49. The minimum value of $\frac{r_1 r_2 r_3}{r^3}$ in a triangle is (symbols have their usual meaning)

50. In a triangle ABC, BC = 3, AC = 4 and AB = 5. The value of $\sin A + \sin 2B + \sin 3C$ equals

(d) None

51. In any triangle *ABC*, the value of $\frac{r_1 + r_2}{1 + \cos C}$ is equal to (where notation have their usual meaning):

(a) 2R

(b) 2r

(c) R

(d) $\frac{2R^2}{r}$

52. In a triangle ABC, medians AD and BE are drawn. If AD = 4; $\angle DAB = \frac{\pi}{6}$ and $\angle ABE = \frac{\pi}{3}$ then the area of the triangle ABC is:

(c) $\frac{32}{3\sqrt{3}}$ (d) $\frac{64}{3\sqrt{3}}$

53. The sides of a triangle are $\sin \alpha$, $\cos \alpha$, $\sqrt{1 + \sin \alpha \cos \alpha}$ for some $0 < \alpha < \frac{\pi}{2}$ then the greatest angle of the triangle is:

(a) $\frac{\pi}{3}$

(b) $\frac{\pi}{2}$

(c) $\frac{2\pi}{3}$

54. Let ABC be a right triangle with $\angle BAC = \frac{\pi}{2}$, then $\left(\frac{r^2}{2R^2} + \frac{r}{R}\right)$ is equal to :

(where symbols used have usual meaning in a triangle)

(a) $\sin B \sin C$

(b) tan B tan C

(c) sec B sec C

(d) $\cot B \cot C$

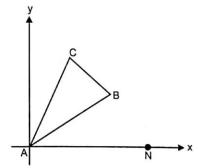
55. Find the radius of the circle escribed to the triangle ABC (Shown in the figure below) on the side BC if $\angle NAB = 30^\circ$; $\angle BAC = 30^\circ$; AB = AC = 5.

(a)
$$\frac{(10\sqrt{2} + 5\sqrt{3} - 5)(2 - \sqrt{3})}{2\sqrt{2}}$$

(b)
$$\frac{(10\sqrt{2}+5\sqrt{3}+5)}{2\sqrt{2}}(2-\sqrt{3})$$

(c)
$$\frac{(10\sqrt{2}+5\sqrt{3}-5)}{2\sqrt{2}}(2+\sqrt{3})$$

(d)
$$\frac{(10\sqrt{2}+5\sqrt{2}+1)}{2\sqrt{3}}(\sqrt{3}-1)$$



56. In a $\triangle ABC$, with usual notations, if b > c then distance between foot of median and foot of altitude both drawn from vertex A on BC is:

(a)
$$\frac{a^2-b^2}{2c}$$

(b)
$$\frac{b^2-c^2}{2a}$$

(c)
$$\frac{b^2 + c^2 - a^2}{2a}$$
 (d) $\frac{b^2 + c^2 - a^2}{2c}$

(d)
$$\frac{b^2+c^2-a^2}{2c}$$

57. In a triangle ABC the expression $a \cos B \cos C + b \cos C \cos A + c \cos A \cos B$ equals to :

(a)
$$\frac{rs}{R}$$

(b)
$$\frac{r}{sR}$$

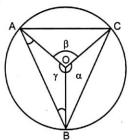
(c)
$$\frac{R}{rs}$$

(d)
$$\frac{Rs}{r}$$

58. In an acute triangle ABC, altitudes from the vertices A, B and C meet the opposite sides at the points D, E and F respectively. If the radius of the circumcircle of $\triangle AFE$, $\triangle BFD$, $\triangle CED$, $\triangle ABC$ be respectively R_1 , R_2 , R_3 and R. Then the maximum value of $R_1 + R_2 + R_3$ is :

(a)
$$\frac{3R}{8}$$

59. A circle of area 20 sq. units is centered at the point O. Suppose \triangle ABC is inscribed in that circle and has area 8 sq. units. The central angles α, β and γ are as shown in the figure. The value of $(\sin \alpha + \sin \beta + \sin \gamma)$ is equal to:



1	1		J			and the second		A	nsv	vers	3								1
1.	(d)	2.	(ъ)	3.	(b)	4.	(c)	5.	(b)	6.	(a)	7.	(d)	8.	(a)	9.	(a)	10.	(c)
11.	(c)	12.	(a)	13.	(a)	14.	(Ъ)	15.	(a)	16.	(a)	17.	(c)	18.	(a)	19.	(a)	20.	(a)
21.	(c)	22.	(c)	23.	(ъ)	24.	(ъ)	25.	(c)	26.	(c)	27.	(c)	28.	(c)	29.	(b)	30.	(a)
31.	(b)	32.	(d)	33.	(b)	34.	(c)	35.	(d)	36.	(a)	37.	(d)	38.	(b)	39.	(d)	40.	(a)
41.	(c)	42.	(d)	43.	(a)	44.	(b)	45.	(b)	46.	(a)	47.	(d)	48.	(a)	49.	(d)	50.	(b)
51.	(a)	52.	(c)	53.	(c)	54.	(a)	55.	(a)	56.	(b)	57.	(a)	58.	(d)	59.	(a)		

Exercise-2: One or More than One Answer is/are Correct

- 1. If r_1, r_2, r_3 are radii of the escribed circles of a triangle ABC and r is the radius of its incircle, then the root(s) of the equation $x^2 - r(r_1r_2 + r_2r_3 + r_3r_1)x + (r_1r_2r_3 - 1) = 0$ is/are:
- (b) $r_2 + r_3$
- (c) 1
- (d) $r_1 r_2 r_3 1$
- **2.** In $\triangle ABC$, $\angle A = 60^{\circ}$, $\angle B = 90^{\circ}$, $\angle C = 30^{\circ}$. Let *H* be its orthocentre, then : (where symbols used have usual meanings)
 - (a) AH = c
- (b) CH = a
- (c) AH = a
- (d) BH = 0
- 3. In an equilateral triangle, if inradius is a rational number then which of the following is/are correct?
 - (a) circumradius is always rational
- (b) exradii are always rational
- (c) area is always ir-rational
- (d) perimeter is always rational
- **4.** Let A, B, C be angles of a triangle ABC and let $D = \frac{5\pi + A}{32}$, $E = \frac{5\pi + B}{32}$, $F = \frac{5\pi + C}{32}$, then:

where
$$D, E, F \neq \frac{n\pi}{2}, n \in I, I$$
 denote set of integers

- (a) $\cot D \cot E + \cot E \cot F + \cot D \cot F = 1$
- (b) $\cot D + \cot E + \cot F = \cot D \cot E \cot F$
- (c) $\tan D \tan E + \tan E \tan F + \tan F \tan D = 1$ (d) $\tan D + \tan E + \tan F = \tan D \tan E \tan F$
- **5.** In a triangle ABC, if a = 4, b = 8 and $\angle C = 60^{\circ}$, then:

(where symbols used have usual meanings)

- (a) c = 6
- (b) $c = 4\sqrt{3}$
- (c) $\angle A = 30^{\circ}$
- (d) $\angle B = 90^{\circ}$
- **6.** In a $\triangle ABC$ if $\frac{r}{r_1} = \frac{r_2}{r_3}$, then which of the following is/are true?

(where symbols used have usual meanings)

(a) $a^2 + b^2 + c^2 = 8R^2$

(b) $\sin^2 A + \sin^2 B + \sin^2 C = 2$

(c) $a^2 + b^2 = c^2$

- (d) $\Delta = s(s+c)$
- 7. ABC is a triangle whose circumcentre, incentre and orthocentre are O, I and H respectively which lie inside the triangle, then:
 - (a) $\angle BOC = A$

(b) $\angle BIC = \frac{\pi}{2} + \frac{A}{2}$

(c) $\angle BHC = \pi - A$

- (d) $\angle BHC = \pi \frac{A}{2}$
- **8.** In a triangle ABC, $\tan A$ and $\tan B$ satisfy the inequality $\sqrt{3}x^2 4x + \sqrt{3} < 0$, then which of the following must be correct?

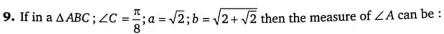
(where symbols used have usual meanings)

(a) $a^2 + b^2 - ab < c^2$

(b) $a^2 + b^2 > c^2$

(c) $a^2 + b^2 + ab > c^2$

(d) $a^2 + b^2 < c^2$



(b) 135°

(c) 30°

10. In triangle ABC, a = 3, b = 4, c = 2. Point D and E trisect the side BC. If $\angle DAE = \theta$, then $\cot^2 \theta$ is divisible by:

(a) 2

11. In a $\triangle ABC$ if $3\sin A + 4\cos B = 6$; $4\sin B + 3\cos A = 1$ then possible value(s) of C be:

(a)

12. If the line joining the incentre to the centroid of a triangle ABC is parallel to the side BC. Which of the following are correct?

(a) 2b = a + c

(b) 2a = b + c

(c) $\cot \frac{A}{2} \cot \frac{C}{2} = 3$ (d) $\cot \frac{B}{2} \cot \frac{C}{2} = 3$

13. In a triangle the length of two larger sides are 10 and 9 respectively. It the angles are in A.P., the length of third side can be:

(a) $5 - \sqrt{6}$

(b) $5 + \sqrt{6}$

(c) $6 - \sqrt{5}$

(d) $6 + \sqrt{5}$

14. If area of $\triangle ABC$, \triangle and angle C are given and if the side c opposite to given angle is minimum,

(a) $a = \sqrt{\frac{2\Delta}{\sin C}}$

(b) $b = \sqrt{\frac{2\Delta}{\sin C}}$

(c) $a = \frac{4\Delta}{\sin C}$

(d) $b = \frac{4\Delta}{\sin^2 C}$

15. In a triangle ABC, if $\tan A = 2\sin 2C$ and $3\cos A = 2\sin B\sin C$ then possible values of C is/are

(a) $\frac{\pi}{8}$

(b) $\frac{\pi}{6}$

(c) $\frac{\pi}{4}$

Answers 3. (a, b, c) 4. (c, d) 2. (a, b, d) (b, c) 1. 5. (b, c, d) 6. (a, b, c) 8. 9. (a) 10. 7. (b, c) (a, c) (b, c) 11. (b) 12. (b, d) (c, d) 15. 13. (a, b) 14. (a, b)

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $\angle A = 23^{\circ}$, $\angle B = 75^{\circ}$ and $\angle C = 82^{\circ}$ be the angles of $\triangle ABC$.

The incircle of $\triangle ABC$ touches the sides BC, CA, AB at points D, E, F respectively. Let r', r'_1 respectively be the inradius, exadius opposite to vertex D of $\triangle DEF$ and r be the inradius of $\triangle ABC$, then

1.
$$\frac{r'}{r} =$$

(a)
$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} - 1$$

(b)
$$1 - \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$$

(c)
$$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} - 1$$

(d)
$$1 - \cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$$

2.
$$\frac{r_1'}{r} =$$

(a)
$$\sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2} - 1$$

(b)
$$1 - \sin \frac{A}{2} + \sin \frac{B}{2} + \sin \frac{C}{2}$$

(c)
$$\cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2} - 1$$

(d)
$$1 - \cos \frac{A}{2} + \cos \frac{B}{2} + \cos \frac{C}{2}$$

Paragraph for Question Nos. 3 to 4

Internal angle bisectors of $\triangle ABC$ meets its circum circle at D, E and F where symbols have usual meaning.

3. Area of $\triangle DEF$ is:

(a)
$$2R^2 \cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right)$$
 (b) $2R^2 \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right)$

(b)
$$2R^2 \sin\left(\frac{A}{2}\right) \sin\left(\frac{B}{2}\right) \sin\left(\frac{C}{2}\right)$$

(c)
$$2R^2 \sin^2\left(\frac{A}{2}\right) \sin^2\left(\frac{B}{2}\right) \sin^2\left(\frac{C}{2}\right)$$

(d)
$$2R^2 \cos\left(\frac{A}{2}\right) \cos\left(\frac{B}{2}\right) \cos\left(\frac{C}{2}\right)$$

4. The ratio of area of triangle ABC and triangle DEF is:

(b)
$$\leq 1$$

(c)
$$\geq 1/2$$

$$(d) \leq 1/2$$

Paragraph for Question Nos. 5 to 6

Let triangle ABC is right triangle right angled at C such that A < B and r = 8, R = 41.

5. Area of $\triangle ABC$ is:

6. $\tan \frac{A}{2} =$

(a) $\frac{1}{10}$

(c) $\frac{1}{6}$

(d) $\frac{1}{9}$

[where notations have their usual meaning]

Paragraph for Question Nos. 7 to 8

Let the incircle of $\triangle ABC$ touches the sides BC, CA, AB at A_1 , B_1 , C_1 respectively. The incircle of $\Delta A_1 B_1 C_1$ touches its sides of $B_1 C_1$, $C_1 A_1$ and $A_1 B_1$ at A_2 , B_2 , C_2 respectively and so on.

(a) 0

(b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$ (d) $\frac{\pi}{3}$

8. In $\triangle A_4 B_4 C_4$, the value of $\angle A_4$ is: (a) $\frac{3\pi + A}{6}$ (b) $\frac{3\pi - A}{8}$ (c) $\frac{5\pi - A}{16}$ (d) $\frac{5\pi + A}{16}$

Paragraph for Question Nos. 9 to 10

Let ABC be a given triangle. Points D and E are on sides AB and AC respectively and point F is on line segment DE. Let $\frac{AD}{AB} = x$, $\frac{AE}{AC} = y$, $\frac{DF}{DE} = z$. Let area of $\triangle BDF = \Delta_1$, area of $\triangle CEF = \Delta_2$ and area of $\triangle ABC = \triangle$.

9. $\frac{\Delta_1}{\Lambda}$ is equal to :

(a) xyz

(b) (1-x)y(1-z) (c) (1-x)yz (d) x(1-y)z

10. $\frac{\Delta_2}{\Delta}$ is equal to :

(a) (1-x)y(1-z) (b) (1-x)(1-y)z (c) x(1-y)(1-z) (d) (1-x)yz

Paragraph for Question Nos. 11 to 13

a,b,c are the length of sides BC, CA, AB respectively of \triangle ABC satisfying $\log\left(1+\frac{c}{a}\right) + \log a - \log b = \log 2.$

Also the quadratic equation $a(1-x^2) + 2bx + c(1+x^2) = 0$ has two equal roots.

11. a, b, c are in:

- (a) A.P.
- (b) G.P.
- (c) H.P.
- (d) None

12. Measure of angle C is:

- (a) 30°
- (b) 45°
- (c) 60°
- (d) 90°

13. The value of $(\sin A + \sin B + \sin C)$ is equal to :

(c) $\frac{8}{3}$

(d) 2

Paragraph for Question Nos. 14 to 16

Let ABC be a triangle inscribed in a circle and let $l_a = \frac{m_a}{M_a}$; $l_b = \frac{m_b}{M_b}$; $l_c = \frac{m_c}{M_c}$ where

 m_a, m_b, m_c are the lengths of the angle bisectors of angles A, B and C respectively, internal to the triangle and M_a , M_b and M_c are the lengths of these internal angle bisectors extended until they meet the circumcircle.

14. l_a equals :

- (a) $\frac{\sin A}{\sin \left(B + \frac{A}{2}\right)}$ (b) $\frac{\sin B \sin C}{\sin^2 \left(\frac{B + C}{2}\right)}$ (c) $\frac{\sin B \sin C}{\sin^2 \left(B + \frac{A}{2}\right)}$ (d) $\frac{\sin B + \sin C}{\sin^2 \left(B + \frac{A}{2}\right)}$

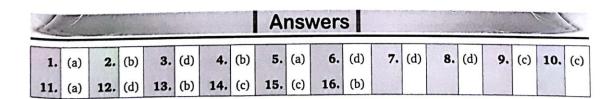
15. The maximum value of the product $(l_a l_b l_c) \times \cos^2\left(\frac{B-C}{2}\right) \times \cos^2\left(\frac{C-A}{2}\right) \times \cos^2\left(\frac{A-B}{2}\right)$ is equal

to:

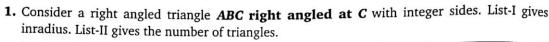
- (a) $\frac{1}{8}$
- (b) $\frac{1}{64}$ (c) $\frac{27}{64}$ (d) $\frac{27}{32}$

16. The minimum value of the expression $\frac{l_a}{\sin^2 A} + \frac{l_b}{\sin^2 B} + \frac{l_c}{\sin^2 C}$ is :

- (a) 2
- (b) 3
- (d) none of these



Exercise-4: Matching Type Problems



	Column-I		Column-II
(A)	3	(P)	6
(B)	4	(Q)	7
(C)	6	(R)	8
(D)	9	(S)	10
		(T)	12

2.

	Column-I	Column-II
(A)	Find the sum of the series $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{9} + \frac{1}{12} + \dots \infty$, where the terms are the reciprocals of the positive integers whose only prime factors are two's and three's	7
(B)	The length of the sides of $\triangle ABC$ are a , b and c and A is the angle opposite to side a . If $b^2 + c^2 = a^2 + 54$ and $bc = \frac{a^3}{\cos A}$ then the value of $\left(\frac{b^2 + c^2}{9}\right)$, is	10
(C)	The equations of perpendicular bisectors of two sides AB and AC of a triangle ABC are $x + y + 1 = 0$ and $x - y + 1 = 0$ respectively. If circumradius of $\triangle ABC$ is 2 units and the locus of vertex A is $x^2 + y^2 + gx + c = 0$, then $(g^2 + c^2)$, is equal to	13
(D)	Number of solutions of the equation $\cos \theta \sin \theta + 6(\cos \theta - \sin \theta) + 6 = 0$ in [0, 30], is equal to	3

3. In $\triangle ABC$, if $r_1 = 21$, $r_2 = 24$, $r_3 = 28$, then

	Column-l		Column-II
(A)	<i>a</i> =	(P)	8
(B)	b =	(Q)	12
(C)	s =	(R)	26

Solution of Triangles

357

(D)	r =	(S)	28
		(T)	42

(Where notations have their usual meaning)

4.

	Column-I		Column-II
(A)	$\frac{r_1(r_2+r_3)}{\sqrt{r_2r_3+r_3r_1+r_1r_2}}$	(P)	$\sin \frac{A}{2}$
(B)	$\frac{r_1}{\sqrt{(r_1+r_2)(r_1+r_3)}}$	(Q)	4R
(C)	$r_1 + r_2 + r_3 - r$	(R)	0
(D)	$\frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} - \frac{1}{r}$	(S)	2R sin A

Answers

1. $A \rightarrow P$; $B \rightarrow P$; $C \rightarrow T$; $D \rightarrow S$

2. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow R$; $D \rightarrow Q$

3. $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow T$; $D \rightarrow P$

4. $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow R$

Exercise-5: Subjective Type Problems

- **1.** If the median AD of $\triangle ABC$ makes an angle $\angle ADC = \frac{\pi}{4}$. Find the value of $|\cot B \cot C|$.
- **2.** In a $\triangle ABC$, $a = \sqrt{3}$, b = 3 and $\angle C = \frac{\pi}{3}$. Let internal angle bisector of angle C intersects side AB at D and altitude from B meets the angle bisector CD at E. If O_1 and O_2 are incentres of $\triangle BEC$ and $\triangle BED$. Find the distance between the vertex B and orthocentre of $\triangle O_1EO_2$.
- 3. In a $\triangle ABC$; inscribed circle with centre I touches sides AB, AC and BC at D, E, F respectively. Let area of quadrilateral ADIE is 5 units and area of quadrilateral BFID is 10 units. Find the value of $\frac{\cos\left(\frac{C}{2}\right)}{\sin\left(\frac{A-B}{2}\right)}$.
- **4.** If Δ be area of incircle of a triangle *ABC* and Δ_1 , Δ_2 , Δ_3 be the area of excircles then find the least value of $\frac{\Delta_1 \Delta_2 \Delta_3}{729 \, \Lambda^3}$.
- **5.** In $\triangle ABC$, b = c, $\angle A = 106^\circ$, M is an interior point such that $\angle MBA = 7^\circ$, $\angle MAB = 23^\circ$ and $\angle MCA = \theta^\circ$, then $\frac{\theta}{2}$ is equal to

(where notations have their usual meaning)

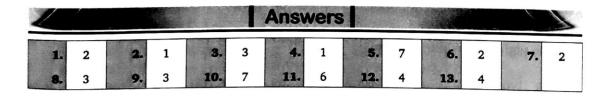
- **6.** In an acute angled triangle *ABC*, $\angle A = 20^\circ$, let *DEF* be the feet of altitudes through *A*, *B*, *C* respectively and *H* is the orthocentre of $\triangle ABC$. Find $\frac{AH}{AD} + \frac{BH}{BE} + \frac{CH}{CF}$.
- 7. Let \triangle ABC be inscribed in a circle having radius unity. The three internal bisectors of the angles A, B and C are extended to intersect the circumcircle of \triangle ABC at A_1 , B_1 and C_1 respectively. Then $\frac{AA_1 \cos \frac{A}{2} + BB_1 \cos \frac{B}{2} + CC_1 \cos \frac{C}{2}}{\sin A + \sin B + \sin C} =$
- **8.** If the quadratic equation $ax^2 + bx + c = 0$ has equal roots where a, b, c denotes the lengths of the sides opposite to vertex A, B and C of the $\triangle ABC$ respectively. Find the number of integers in the range of $\frac{\sin A}{\sin C} + \frac{\sin C}{\sin A}$.
- 9. If in the triangle ABC, $\tan \frac{A}{2}$, $\tan \frac{B}{2}$ and $\tan \frac{C}{2}$ are in harmonic progression then the least value of $\cot^2 \frac{B}{2}$ is equal to:
- 10. In $\triangle ABC$, if circumradius 'R' and inradius 'r' are connected by relation $R^2 4Rr + 8r^2 12r + 9 = 0$, then the greatest integer which is less than the semiperimeter of $\triangle ABC$ is:

Solution of Triangles 359

11. Sides AB and AC in an equilateral triangle ABC with side length 3 is extended to form two rays from point A as shown in the figure. Point P is chosen outside the triangle ABC and between the two rays such that $\angle ABP + \angle BCP = 180^{\circ}$. If the maximum length of CP is M, then $M^2/2$ is equal to:



- **12.** Let a, b, c be sides of a triangle ABC and Δ denotes its area. If a = 2; $\Delta = \sqrt{3}$ and $a\cos C + \sqrt{3} a\sin C b c = 0$; then find the value of (b + c). (symbols used have usual meaning in ΔABC).
- 13. If circumradius of $\triangle ABC$ is 3 units and its area is 6 units and $\triangle DEF$ is formed by joining foot of perpendiculars drawn from A, B, C on sides BC, CA, AB respectively. Find the perimeter of $\triangle DEF$.

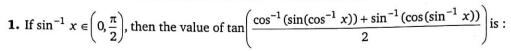


900

Chapter 25 - Inverse Trigonometric Functions

INVERSE TRIGONOMETRIC **FUNTIONS**

Exercise-1: Single Choice Problems



(a) 1 (b) 2 (c) 3 (d) 4 **2.** The solution set of $(\cot^{-1} x)(\tan^{-1} x) + \left(2 - \frac{\pi}{2}\right)\cot^{-1} x - 3\tan^{-1} x - 3\left(2 - \frac{\pi}{2}\right) > 0$, is:

(a) $x \in (\tan 2, \tan 3)$

- (b) $x \in (\cot 3, \cot 2)$
- (c) $x \in (-\infty, \tan 2) \cup (\tan 3, \infty)$
- (d) $x \in (-\infty, \cot 3) \cup (\cot 2, \infty)$
- **3.** The value of $\sec^2(\tan^{-1} 2) + \csc^2(\cot^{-1} 3)$ is :
 - (a) 14
- (b) 15
- (d) 17

4. Sum the series:

$$\tan^{-1}\left(\frac{4}{1+3\cdot 4}\right) + \tan^{-1}\left(\frac{6}{1+8\cdot 9}\right) + \tan^{-1}\left(\frac{8}{1+15\cdot 16}\right) + \dots \infty \text{ is :}$$

- (a) $\cot^{-1}(2)$
- (b) $\tan^{-1}(2)$ (c) $\frac{\pi}{2}$

- 5. $\cot^{-1}(\sqrt{\cos\alpha}) \tan^{-1}(\sqrt{\cos\alpha}) = x$, then $\sin x = -1$
 - (a) $\tan^2\left(\frac{\alpha}{2}\right)$

- (b) $\cot^2\left(\frac{\alpha}{2}\right)$ (c) $\tan \alpha$ (d) $\cot\left(\frac{\alpha}{2}\right)$

6. The sum of the infinite series $\cot^{-1}\left(\frac{7}{4}\right) + \cot^{-1}\left(\frac{19}{4}\right) + \cot^{-1}\left(\frac{39}{4}\right) + \cot^{-1}\left(\frac{67}{4}\right) + \dots \infty$ is:

- (a) $\frac{\pi}{4} \cot^{-1}(3)$ (b) $\frac{\pi}{4} \tan^{-1}(3)$ (c) $\frac{\pi}{4} + \cot^{-1}(3)$ (d) $\frac{\pi}{4} + \tan^{-1}(3)$

7. The number of solutions of equation $\cos^{-1}(1-x) + m\cos^{-1}x = \frac{n\pi}{2}$ is : (where m > 0; $n \le 0$)

- (a) 0
- (b) 1
- (c) 2
- (d) none of these

Inverse Trigonome	etric Functions		361
8. Number of	solution(s) of the equation 2	$\tan^{-1}(2x-1) = \cos^{-1}($	x) is:
(a) 1	(b) 2	(c) 3	(d) infinitely many
9. $\sin^{-1}\left(\frac{x^2}{4}\right)$	$\left(\frac{y^2}{9}\right) + \cos^{-1}\left(\frac{x}{2\sqrt{2}} + \frac{y}{3\sqrt{2}} - 2\right)$	equals to :	
(a) $\frac{\pi}{2}$	(b) π	(c) $\frac{\pi}{\sqrt{2}}$	(d) $\frac{3\pi}{2}$
10. The comple	te solution set of the inequali	$(\cos^{-1} x)^2 - (\sin^{-1} x)^2$	$(x)^2 > 0$ is:
(a) $\left[0,\frac{1}{\sqrt{2}}\right]$	$ (b) \left[-1, \frac{1}{\sqrt{2}}\right) $	(c) (-1,1)	(d) $\left[-1,\frac{1}{2}\right)$
11. Let α, β are t	the roots of the equation x^2 +	7x + k(k-3) = 0, whe	re $k \in (0, 3)$ and k is a constant.
	lue of $\tan^{-1} \alpha + \tan^{-1} \beta + \tan^{-1} \beta$		
(a) π	(b) $\frac{\pi}{2}$	(c) 0	(d) $-\frac{\pi}{2}$
12. Let $f(x) = 0$	2	n and range of $f(x)$ a	re the same set, then $(b-a)$ is
equal to:	1, 20 cos 3, 0 7 of 11 dollar		
(a) $1 - \frac{1}{\pi}$		(b) $\frac{2}{\pi}$	
(c) $\frac{2}{\pi} + 1$		(d) $1 + \frac{1}{\pi}$	
16	$5\pi^2$	anuala to t	
13. If $(\tan^{-1} x)^{4}$	$x^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}$, then x	equals to:	_
(a) -1	(b) 1	(c) 0	(d) $\sqrt{3}$
14. The total n	umber of ordered pairs (x, y)	y) satisfying $ y = \cos x$	x and $y = \sin^{-1}(\sin x)$, where
$x \in [-2\pi, 3\pi]$	is equal to :		(1) (
(a) 2	(b) 4	(c) 5	(d) 6
		ere[·] denotes greatest	integer function, then complete
set of values	of x is:	(b) [tan(sin(co	os 1)), tan(sin(cos(sin 1)))]
(a) [tan(sin	(cos1)), tan(cos(sin1))]		
(c) [tan(cos	$s(\sin 1)$, $tan(sin(cos(sin 1)))$ of ordered pair(s) (x, y) of r	eal numbers satisfying	
16. The number	of ordered pair (s) (x, y) of (x, y)	car numbers satisfying	s die equation
	$\sin(\cos^{-1} y) = 0$, is:	(c) 2	(d) 3
(a) 0	(b) 1		(4) 5
17. The value of	$\tan^{-1} 1 + \tan^{-1} 2 + \tan^{-1} 3$	3π	5π

(a) $\frac{\pi}{2}$

(b) π

18.	The complete set of va	alues of x for which 2 tan	$^{-1} x + \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right)$ is	independent of x is :
19.	(a) $(-\infty, 0]$ The number of	(b) $[0, \infty)$ ordered pair(s) (x, ∞)	(c) $(-\infty - 1)$	(d) [1,∞)
20.	$16(x^2 + y^2) - 48\pi x +$ (a) 0 Domain (D) and rang	$16\pi y + 31\pi^2 = 0$, is: (b) 1 se (R) of $f(x) = \sin^{-1}(\cos x)$	(c) 2	(d) 3
	function is (a) $D = [1, 2), R = \{0\}$ (c) $D = [-1, 1), R = \{0\}$		(b) $D = [0, 1), R = \{-1, 1\}, $	
21.	If $2\sin^{-1} x + (\cos^{-1} x)$	$3 > \frac{\pi}{2} + \{\sin^{-1} x\}, \text{ then } x$	e: (where {∙} denotes fra	actional part function)
22.	$Let f(x) = x^{11} + x^9$	(b) [sin 1, 1] $-x^7 + x^3 + 1$ and α , then the value of λ is:	(c) $(\sin 1, 1]$ $f(\sin^{-1}(\sin 8)) = \alpha$, (c)	(d) None of these α is constant). If
23.	(a) 2	(b) 3 alues of x satisfying the e	(c) 4 quation $3 \sin^{-1} x + \pi x$	(d) 1 $-\pi = 0$ is/are:
	(a) 0 Range of $f(x) = \sin^{-1}(x)$	(b) 1	(c) 2	(d) 3
	(a) $\left[-\frac{\pi}{2}-2,\frac{\pi}{2}+6\right]$	(b) $\left[0, \frac{\pi}{2} + 6\right]$	L –	
			$(\csc^{-1}x)^2 - 2\csc^{-1}$	$x \ge \frac{\pi}{6} (\csc^{-1} x - 2) \text{is}$
	$(-\infty, a] \cup [b, \infty)$, then (a) 0	(a + b) equals : (b) 1	(c) 2	(d) -3
26.	Number of solution of	f the equation $2\sin^{-1}(x - 1)$	$+2) = \cos^{-1}(x+3)$ is:	.,,
	(a) 0	(b) 1	(c) 2	(d) None of these
27.	$\tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right)$	$+\tan^{-1}\left(\frac{1}{13}\right)+\ldots\infty=$		
	(a) $\frac{\pi}{4}$	(b) $\frac{\pi}{2}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{6}$
28.	If $\tan^{-1}\frac{1}{4} + \tan^{-1}\frac{2}{9} =$	$=\frac{1}{2}\cos^{-1}x$ then x is equal	al to:	
	(a) $\frac{1}{2}$	(b) $\frac{2}{5}$	(c) $\frac{3}{5}$	(d) none of these

29. The set of value of x, satisfying the equation $\tan^2(\sin^{-1} x) > 1$ is:

(b)
$$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

(c)
$$[-1, 1] - \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$$

(d)
$$(-1, 1) - \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$$

30. The sum of the series $\cot^{-1}\left(\frac{9}{2}\right) + \cot^{-1}\left(\frac{33}{4}\right) + \cot^{-1}\left(\frac{129}{8}\right) + \dots \infty$ is equal to :

(a)
$$\cot^{-1}(2)$$

(b)
$$\cot^{-1}(3)$$

(c)
$$\cot^{-1}(-1)$$
 (d) $\cot^{-1}(1)$

(d)
$$\cot^{-1}(1)$$

31. If
$$\int \frac{\ln(\cot x)}{\sin x \cos x} dx = -\frac{1}{k} \ln^2(\cot x) + C$$

(where C is a constant); then the value of k is:

(d)
$$\frac{1}{2}$$

32. The number of solutions of $\sin^{-1} x + \sin^{-1} (1+x) = \cos^{-1} x$ is/are:

(d) infinite

33. The value of x satisfying the equation

$$(\sin^{-1} x)^3 - (\cos^{-1} x)^3 + (\sin^{-1} x)(\sin^{-1} x - \cos^{-1} x) = \frac{\pi^3}{16}$$
 is:

(a)
$$\cos \frac{\pi}{5}$$

(b)
$$\cos \frac{\pi}{4}$$

(c)
$$\cos \frac{\pi}{8}$$

(d)
$$\cos \frac{\pi}{12}$$

34. The complete solution set of the equation

$$\sin^{-1} \sqrt{\frac{1+x}{2}} - \sqrt{2-x} = \cot^{-1} (\tan \sqrt{2-x}) - \sin^{-1} \sqrt{\frac{1-x}{2}}$$
 is:

(a)
$$\left[2-\frac{\pi^2}{4},1\right]$$

(b)
$$\left[1 - \frac{\pi^2}{4}, 1\right]$$

(a)
$$\left[2 - \frac{\pi^2}{4}, 1\right]$$
 (b) $\left[1 - \frac{\pi^2}{4}, 1\right]$ (c) $\left[2 - \frac{\pi^2}{4}, 0\right]$

35. Let $f(x) = \tan^{-1} \left(\frac{\sqrt{1 + x^2 - 1}}{x} \right)$ then which of the following is correct:

- (a) f(x) has only one integer in its range
- (b) Range of f(x) is $\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \{0\}$
- (c) Range of f(x) is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \{0\}$
- (d) Range of f(x) is $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right] \{0\}$

36. If $\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{2}{9} = \frac{1}{2} \cos^{-1} x$ then x is equal to :

(a)
$$\frac{1}{2}$$

(b)
$$\frac{2}{5}$$

(c)
$$\frac{3}{5}$$

(d) None of these

364			Advanced Problem.	s in Mathematics for JEE
37	The set of values of x ,	satisfying the equation to	$\tan^2(\sin^{-1}x) > 1$ is:	
	(a) (-1,1)	* was now and the second	(b) $\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	
	(c) $[-1,1] - \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\overline{\overline{z}}$	(d) $(-1,1) - \left[-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right]$	$\left[\frac{1}{2}\right]$
38.	The sum of the series	$\cot^{-1}\left(\frac{9}{2}\right) + \cot^{-1}\left(\frac{33}{4}\right) +$	$\cot^{-1}\left(\frac{129}{8}\right) + \dots \infty$ is	equal to
	(a) $\cot^{-1}(2)$	(b) cot ⁻¹ (3)	(c) $\cot^{-1}(-1)$	(d) $\cot^{-1}(1)$
39.	The number of real va	lues of x satisfying tan ⁻¹	$\left(\frac{x}{1-x^2}\right) + \tan^{-1}\left(\frac{1}{x^3}\right)$	$=\frac{3\pi}{4}$ is:
	(a) 0	(b) 1	(c) 2	(d) infinitely many
40.	Number of integral va	lues of λ such that the eq	uation $\cos^{-1} x + \cot^{-1}$	$x = \lambda$ possesses solution
	is:		6	
	(a) 2	(b) 8	(c) 5	(d) 10
41.	If the equation $x^3 + b$	$x^2 + cx + 1 = 0 (b < c)$ has	s only one real root α .	
	Then the value of 2 ta	n^{-1} (cosec α) + tan ⁻¹ (2 si	in $\alpha \sec^2 \alpha$) is:	
	(a) $-\frac{\pi}{2}$	(b) -π	(c) $\frac{\pi}{2}$	(d) π
42.	Range of the function	$f(x) = \cot^{-1}\{-x\} + \sin^{-1}(x)$	$^{-1}\{x\} + \cos^{-1}\{x\}$, whe	re {·} denotes fractional
	part function			
	(a) $\left(\frac{3\pi}{4},\pi\right)$	(b) $\left[\frac{3\pi}{4},\pi\right]$		
40	162 < a < 4 then the Va	alue of $\sin^{-1}(\sin[a]) + \tan^{-1}(\sin[a])$	$n^{-1}(tan[a]) + sec^{-1}(sec^{-1})$	c(a), where $[x]$ denotes
43.	greatest integer functi	on less than or equal to :	x, is equal to :	
		4 \ 0 - 0	(C) $2\pi - 3$	(d) $9-2\pi$
	The number of real so	(b) $2\pi - 9$ lutions of $y + y^2 = \sin x$	and $y + y^3 = \cos^{-1} \cos$	s x is/are
		(b) 1	(c) 3	(d) Infinite
	(a) 0 $\sin^{-1} 1$	$[x-1] + 2\cos^{-1}[x-2]$	denotes greatest inte	ger function)
45.		(m)	(π π)	(3π .)
	(a) $\left\{-\frac{\pi}{2},0\right\}$	(b) $\left\{\frac{\pi}{2}, 2\pi\right\}$	(c) $\left\{\frac{\pi}{4}, \frac{\pi}{2}\right\}$	(d) $\left\{\frac{3\pi}{2}, 2\pi\right\}$

Invers	e Tri	gonoi	netri	c Fun	ction	S .						No.						PA.	36
1	1							A	nsv	ver	s								7
1.	(a)	2.	(b)	3.	(b)	4.	(a)	5.	(a)	6.	(c)	7.	(a)	8.	(a)	9.	(d)	10.	(b)
11.	(c)	12.	(d)	13.	(a)	14.	(c)	15.	(b)	16.	(b)	17.	(ъ)	18.	(a)	19.	(d)	20.	(a)
21.	(b)	22.	(a)	23.	(b)	24.	(a)	25.	(b)	26.	(b)	27.	(a)	28.	(c)	29.	(d)	30.	(a)
31.	(b)	32.	(ъ)	33.	(c)	34.	(a)	35.	(b)	36.	(c)	37.	(d)	38.	(a)	39.	(a)	40.	(c)
41.	(b)	42.	(d)	43.	(a)	44.	(d)	45.	(d)										

Exercise-2: One or More than One Answer is/are Correct

1. $f(x) = \sin^{-1}(\sin x), g(x) = \cos^{-1}(\cos x)$, then:

(a)
$$f(x) = g(x)$$
 if $x \in \left(0, \frac{\pi}{4}\right)$

(b)
$$f(x) < g(x) \text{ if } x \in \left(\frac{\pi}{2}, \frac{3\pi}{4}\right)$$

(c)
$$f(x) < g(x) \text{ if } \left(\pi, \frac{5\pi}{4}\right)$$

(d)
$$f(x) > g(x)$$
 if $x \in \left(\pi, \frac{5\pi}{4}\right)$

2. The solution(s) of the equation $\cos^{-1} x = \tan^{-1} x$ satisfy

(a)
$$x^2 = \frac{\sqrt{5}-1}{2}$$

(b)
$$x^2 = \frac{\sqrt{5} + 1}{2}$$

(c)
$$\sin(\cos^{-1} x) = \frac{\sqrt{5} - 1}{2}$$
 (d) $\tan(\cos^{-1} x) = \frac{\sqrt{5} - 1}{2}$

(d)
$$\tan(\cos^{-1} x) = \frac{\sqrt{5} - 1}{2}$$

3. If the numerical value of $\tan\left(\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)\right)$ is $\left(\frac{a}{b}\right)$, where a, b are two positive integers

and their H.C.F. is 1

(a)
$$a + b = 23$$

(b)
$$a-b=11$$

(c)
$$3b = a + 1$$

(d)
$$2a = 3b$$

4. A solution of the equation $\cot^{-1} 2 = \cot^{-1} x + \cot^{-1} (10 - x)$ where 1 < x < 9 is :

(a) 7

5. Consider the equation $\sin^{-1}\left(x^2-6x+\frac{17}{2}\right)+\cos^{-1}k=\frac{\pi}{2}$, then:

(a) the largest value of k for which equation has 2 distinct solution is 1

(b) the equation must have real root if
$$k \in \left(-\frac{1}{2}, 1\right)$$

(c) the equation must have real root if
$$k \in \left(-1, \frac{1}{2}\right)$$

(d) the equation has unique solution if
$$k = -\frac{1}{2}$$

6. The value of x satisfying the equation

$$(\sin^{-1} x)^3 - (\cos^{-1} x)^3 + (\sin^{-1} x) (\cos^{-1} x) (\sin^{-1} x - \cos^{-1} x) = \frac{\pi^3}{16}$$

can not be equal to:

- (a) $\cos \frac{\pi}{5}$
- (b) $\cos \frac{\pi}{4}$
- (c) $\cos \frac{\pi}{8}$
- (d) $\cos \frac{\pi}{12}$

Answers (a, b, c) (a, c) (a, b) (a, b, d) (a, b, d) (a, b, c)

Inverse Trigonometric Functions

367

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 2

Let $\cos^{-1}(4x^3 - 3x) = a + b \cos^{-1} x$

1. If
$$x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$
, then $\sin^{-1}\left(\sin\frac{a}{b}\right)$ is:

(a) $-\frac{\pi}{3}$ (b) $\frac{\pi}{3}$ (c) $-\frac{\pi}{6}$ (d) $\frac{\pi}{6}$ 2. If $x \in \left(\frac{1}{2}, 1\right]$, then $\lim_{y \to a} b \cos y$ is:

(a) $-\frac{1}{3}$ (b) -3

(c) $\frac{1}{3}$

(d) 3

1					An	swers		1
1.	(a)	2.	(d)					

Exercise-4: Matching Type Problems

1.

	Column-I	1	Column-II
(A)	$\sin^{-1}\frac{4}{5} + 2\tan^{-1}\frac{1}{3} =$	(P)	$\frac{\pi}{6}$
(B)	$\sin^{-1}\frac{12}{13} + \cos^{-1}\frac{4}{5} + \tan^{-1}\frac{63}{16} =$	(Q)	$\frac{\pi}{2}$
(C)	If $A = \tan^{-1} \frac{x\sqrt{3}}{2\lambda - x}$, $B = \tan^{-1} \left(\frac{2x - \lambda}{\lambda\sqrt{3}}\right)$	(R)	$\frac{\pi}{4}$
(D)	then $A - B$ can be equal to $\tan^{-1} \frac{1}{7} + 2\tan^{-1} \frac{1}{3} =$	(S)	π
		(T)	$\frac{\pi}{3}$

2.

1	Column-l		Column-II
(P)	If $f(x) = \sin^{-1} x$ and $\lim_{x \to \frac{1^+}{2}} f(3x - 4x^3)$	(P)	3
	$= l - 3 \left(\lim_{x \to \frac{1^+}{2}} f(x) \right) $ then $[l] =$		
	([·] denotes greatest integer function)		
(Q)	If $x > 1$, then the value of $\sin\left(\frac{1}{2}\tan^{-1}\frac{2x}{1-x^2}-\tan^{-1}x\right)$	(Q)	-1
	is		
(R)	Number of values of x satisfying $\sin^{-1} x - \cos^{-1} x = \sin^{-1} (3x - 2)$	(R)	2
(S)	The value of $\sin\left(\tan^{-1} 3 + \tan^{-1} \frac{1}{3}\right)$	(S)	1

3.

	Column-i		Column-II
(A)	If the first term of an arithmetic progression is 1, its second term is n , and the sum of the first n terms is $33n$	(P)	3
(B)	If the equation $\cos^{-1} x + \cot^{-1} x = k$ possess solution, then the largest integral value of k is	(Q)	4
(C)	The number of solution of equation $\cos \theta = 1 + \sin \theta $ in interval [0, 3π], is	(R)	5
(D)	If the quadratic equation $x^2 - x - a = 0$ has integral roots where $a \in N$ and $4 \le a \le 40$, then the number of possible values of a is	(S)	9

4.

	Column-i		Column-ii
(A)	The value of $tan^{-1}([\pi]) + tan^{-1}([-\pi] + 1) =$ ([-] denotes greatest integer function)	(P)	2
(B)	The number of solutions of the equation $\tan x + \sec x = 2\cos x$ in the interval [0, 2π] is	(Q)	3
(C)	The number of roots of the equation $x + 2 \tan x = \frac{\pi}{2}$ in the interval $[0, 2\pi]$ is	(R)	0
(D)	The number of solutions of the equation $x^3 + x^2 + 4x + 2\sin x = 0$ in the interval $[0, 2\pi]$ is		1

Answers

- 1. $A \rightarrow Q$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow R$
- 2. $A \rightarrow P$; $B \rightarrow Q$; $C \rightarrow R$; $D \rightarrow S$
- 3. $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$
- 4. $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow Q$; $D \rightarrow S$

Exercise-5: Subjective Type Problems

- 1. The complete set of values of x satisfying the inequality $\sin^{-1}(\sin 5) > x^2 4x$ is $(2 \sqrt{\lambda 2\pi}, 2 + \sqrt{\lambda 2\pi})$, then $\lambda =$
- **2.** In a $\triangle ABC$; if $(II_1)^2 + (I_2I_3)^2 = \lambda R^2$, where I denotes incentre; I_1, I_2 and I_3 denote centres of the circles escribed to the sides BC, CA and AB respectively and R be the radius of the circum circle of $\triangle ABC$. Find λ .
- 3. If $2 \tan^{-1} \frac{1}{5} \sin^{-1} \frac{3}{5} = -\cos^{-1} \frac{63}{\lambda}$, then $\lambda =$
- **4.** If $2 \tan^{-1} \frac{1}{5} \sin^{-1} \frac{3}{5} = -\cos^{-1} \frac{9\lambda}{65}$, then $\lambda =$
- **5.** If $\sum_{n=0}^{\infty} 2 \cot^{-1} \left(\frac{n^2 + n + 4}{2} \right) = k\pi$, then find the value of k.
- **6.** Find number of solutions of the equation $\sin^{-1}(|\log_6^2(\cos x) 1|) + \cos^{-1}(|3\log_6^2(\cos x) 7|) = \frac{\pi}{2}$, if $x \in [0, 4\pi]$.

L					Y.	Answ	vers					3
1.	9	2.	16	3.	65	4.	7	5.	1	6.	4	

موو

Chapter 26 - Vector & 3Dimensional Geometry

Vector & 3Dimensional Geometry

26. Vector and 3Dimensional Geometry

VECTOR & 3DIMENSIONAL **GEOMETRY**

Exercise-1: Single Choice Problems

1. The minimum value of $x^2 + y^2 + z^2$ if ax + by + cz = p, is:

(a)
$$\left(\frac{p}{a+b+c}\right)^2$$

(b)
$$\frac{p^2}{a^2 + b^2 + c^2}$$

(a)
$$\left(\frac{p}{a+b+c}\right)^2$$
 (b) $\frac{p^2}{a^2+b^2+c^2}$ (c) $\frac{a^2+b^2+c^2}{p^2}$ (d) 0

2. If the angle between the vectors $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is $\frac{\pi}{3}$ and the area of the triangle with adjacent sides equal to $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ is 3, then $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}$ is equal to :

(a)
$$\sqrt{3}$$

3. A straight line cuts the sides AB, AC and AD of a parallelogram ABCD at points B_1 , C_1 and D_1 respectively. If $\overrightarrow{AB_1} = \lambda_1 \overrightarrow{AB}$, $\overrightarrow{AD_1} = \lambda_2 \overrightarrow{AD}$ and $\overrightarrow{AC_1} = \frac{\lambda_3}{2} \overrightarrow{AC}$, where λ_1 , λ_2 and λ_3 are positive real numbers, then:

(a)
$$\lambda_1, \lambda_3$$
 and λ_2 are in AP

(b) λ_1, λ_3 and λ_2 are in GP

(c)
$$\lambda_1, \lambda_3$$
 and λ_2 are in HP

(d) $\lambda_1 + \lambda_2 + \lambda_3 = 0$

4. Let $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ is 30° then $(\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \times \overrightarrow{\mathbf{c}}$ is equal to:

(a)
$$\frac{2}{3}$$

(b)
$$\frac{3}{2}$$

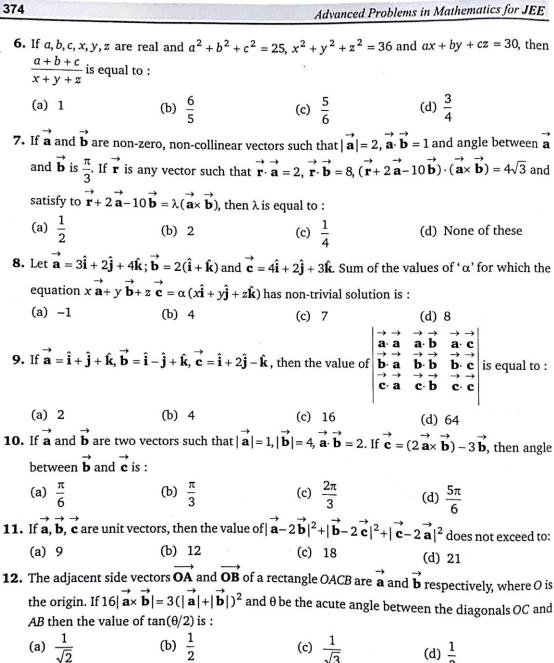
(d) 3

5. If acute angle between the line $\vec{r} = \hat{i} + 2\hat{j} + \lambda(4\hat{i} - 3\hat{k})$ and xy-plane is θ_1 and acute angle between the planes x + 2y = 0 and 2x + y = 0 is θ_2 , then $(\cos^2 \theta_1 + \sin^2 \theta_2)$ equals to :

(b)
$$\frac{1}{4}$$
 (c) $\frac{2}{3}$

(c)
$$\frac{2}{3}$$

(d)
$$\frac{3}{4}$$



13. The vector $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC. The length of

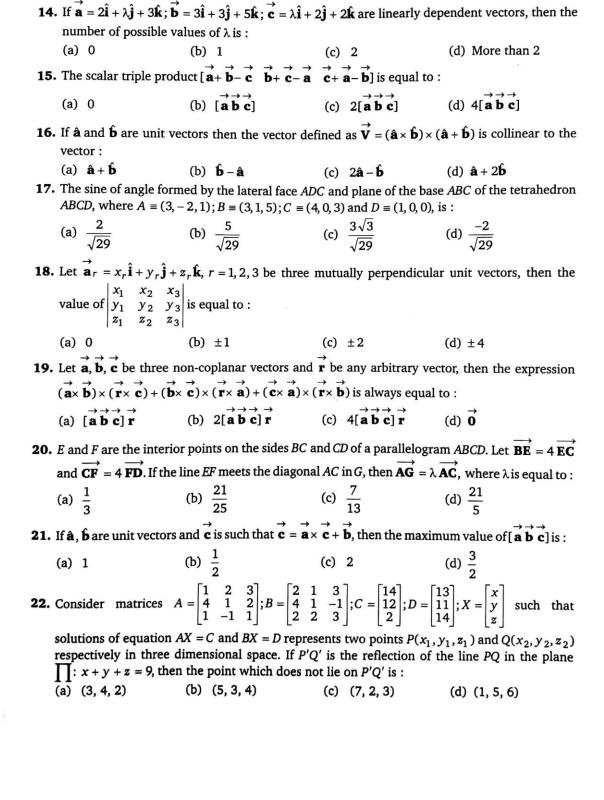
(c) $\sqrt{33}$

(d) $\sqrt{18}$

the median through A is:

(a) √288

(b) $\sqrt{72}$

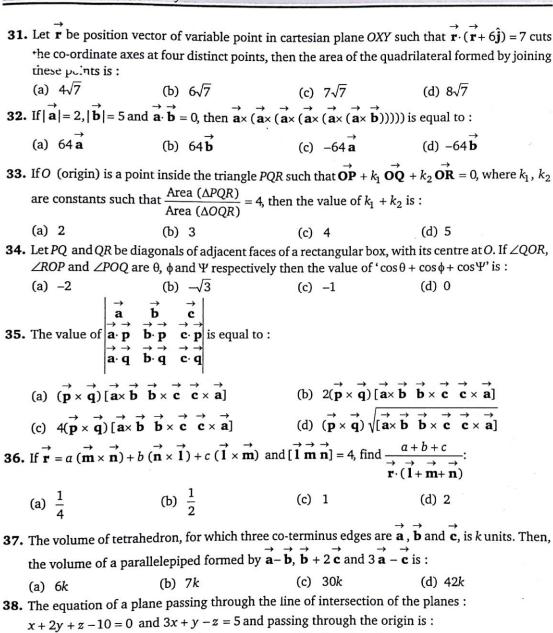


Advanced Problems in Mathematics for JEE

23	. Th A(e value of α for w $(\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}), B(2\hat{\mathbf{i}} + 2\hat{\mathbf{j}})$	hich + k)	point $M(\alpha \hat{\mathbf{i}} + 2\hat{\mathbf{j}} +$ and $C(3\hat{\mathbf{i}} - \hat{\mathbf{k}})$ is:	k), l		containing three points
	(a)) 1	(b)	2	(c)	$\frac{1}{2}$	(d) $-\frac{1}{2}$
24	the	e origin is :					7. The distance of Q from
	201 102	$\sqrt{\frac{70}{3}}$					(d) $\sqrt{\frac{15}{2}}$
25.	a, l cot	and $\hat{\mathbf{a}} - \hat{\mathbf{b}}$ are unit erminous edges is:	vecto	ors. The volume of th	ne pa	rallelopiped, form	ed with $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ and $\hat{\mathbf{a}} \times \hat{\mathbf{b}}$ as
		1	(b)	58 8 %		3	(d) $\frac{3}{4}$
26.	rQ	is equal to:			neet	the plane $3x + 2y$	+11z - 9 = 0 at Q. Then
		$\frac{5\sqrt{41}}{59}$				$\frac{50\sqrt{41}}{59}$	37
27.	If	$\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are three	e non	-zero non-coplanar	vecto	ors and $\overrightarrow{\mathbf{p}} = \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}$	$-2\overrightarrow{\mathbf{c}}; \overrightarrow{\mathbf{q}} = 3\overrightarrow{\mathbf{a}} - 2\overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}$
	and → -	$\mathbf{d} \mathbf{r} = \mathbf{a} - 4\mathbf{b} + 2\mathbf{c} a$ $\mathbf{d} \rightarrow \rightarrow \rightarrow \rightarrow$	are th	nree vectors such tha	at the	e volumes of the p	arallelopiped formed by
					re V ₁	and V_2 respectively	y. Then $rac{V_2}{V_1}$ is equal to :
00		10	(b)		(c)	20	(d) None of these
28.	n per	the two lines rep pendicular to each	resei othe	inted by $x + ay = b$ r, then the value of a	; z + aa' +	-cy = d and $x = cc'$ is:	a'y + b'; $z = c'y + d'$ be
	(a)	1	(b)	2	(c)	3	(d) 4
29.	The	distance between	the li	$ne \stackrel{\rightarrow}{\mathbf{r}} = 2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$	+ λ($\hat{\mathbf{i}} - \hat{\mathbf{j}} + 4\hat{\mathbf{k}}$) and the	e plane $\vec{\mathbf{r}} \cdot (\hat{\mathbf{i}} + 5\hat{\mathbf{j}} + \hat{\mathbf{k}}) = 5$
	is:						$P(\mathbf{i} + \mathbf{j} + \mathbf{k}) = 5$
				$\frac{10}{3\sqrt{3}}$		10	(d) $\frac{10}{3}$
30.	If (a	$\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c} = \overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c})$	c),≀	where $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ ar	e any	y three vectors suc	th that $\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}} \neq 0, \overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}} \neq 0$,
	ther	$\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{c}}$ are:				(i 5)5.5-	a. a.a. a. b ≠ 0, b. c ≠ 0,
	(a)	Inclined at an ang	le of	$\frac{\pi}{3}$	(b)) Inclined at an a	angle of $\frac{\pi}{c}$
	(c)	Perpendicular				Parallel	0

(a) 5x + 3z = 0

(c) 5x + 4y + 3z = 0



(b) 5x - 3z = 0

(d) 5x - 4y + 3z = 0

39. Find the locus of a point whose distance from x -axis is twice the distance from the point (1, -1, 2):

(a)
$$y^2 + 2x - 2y - 4z + 6 = 0$$

(b)
$$x^2 + 2x - 2y - 4z + 6 = 0$$

(c)
$$x^2 - 2x + 2y - 4z + 6 = 0$$

(d)
$$z^2 - 2x + 2y - 4z + 6 = 0$$

1	1							A	nsv	vers	S		art maj (a		15013		1		1
1.	(b)	2.	(b)	3.	(c)	4.	(b)	5.	(a)	6.	(c)	7.	(d)	8.	(c)	9.	(c)	10.	(d)
11.	(d)	12.	(d)	13.	(c)	14.	(c)	15.	(d)	16.	(b)	17.	(b)	18.	(b)	19.	(b)	20.	(Ъ
21.	(b)	22.	(a)	23.	(ъ)	24.	(a)	25.	(d)	26.	(d)	27.	(b)	28.	(a)	29.	(b)	30.	(d
31.	(d)	32.	(d)	33.	(b)	34.	(c)	35.	(d)	36.	(a)	37.	(d)	38.	(b)	39.	(c)		

Exercise-2: One or More than One Answer is/are Correct

1. If equation of three lines are:

$$\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$$
; $\frac{x}{2} = \frac{y}{1} = \frac{z}{3}$ and $\frac{x-1}{1} = \frac{2-y}{1} = \frac{z-3}{0}$, then

which of the following statement(s) is/are correct?

- (a) Triangle formed by the line is equilateral
- (b) Triangle formed by the lines is isosceles
- (c) Equation of the plane containing the lines is x + y = z
- (d) Area of the triangle formed by the lines is $\frac{3\sqrt{3}}{2}$

2. If $\vec{\mathbf{a}} = \hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$; $\vec{\mathbf{b}} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\vec{\mathbf{c}} = (\alpha + 1)\hat{\mathbf{i}} + (\beta - 1)\hat{\mathbf{j}} + \hat{\mathbf{k}}$ are linearly dependent vectors and $|\overrightarrow{\mathbf{c}}| = \sqrt{6}$; then the possible value(s) of $(\alpha + \beta)$ can be:

- (a) 1
- (b) 2
- (c) 3
- (d) 4

3. Consider the lines:

$$L_1: \frac{x-2}{1} = \frac{y-1}{7} = \frac{z+2}{-5}$$

$$L_2: x-4=y+3=-x$$

Then which of the following is/are correct?

- (a) Point of intersection of L_1 and L_2 is (1, -6, 3)
- (b) Equation of plane containing L_1 and L_2 is x + 2y + 3z + 2 = 0
- (c) Acute angle between L_1 and L_2 is $\cot^{-1}\left(\frac{13}{15}\right)$
- (d) Equation of plane containing L_1 and L_2 is x + 2y + 2z + 3 = 0
- **4.** Let $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ and $\hat{\mathbf{c}}$ be three unit vectors such that $\hat{\mathbf{a}} = \hat{\mathbf{b}} + (\hat{\mathbf{b}} \times \hat{\mathbf{c}})$, then the possible value(s) of $|\hat{\mathbf{a}} + \hat{\mathbf{b}} + \hat{\mathbf{c}}|^2$ can be:
 - (a) 1
- (b) 4
- (d) 9

5. The value(s) of μ for which the straight lines $\vec{r} = 3\hat{i} - 2\hat{j} - 4\hat{k} + \lambda_1(\hat{i} - \hat{j} + \mu\hat{k})$ and $\vec{r} = 5\hat{i} - 2\hat{j} + \hat{k} + \lambda_2(\hat{i} + \mu\hat{j} + 2\hat{k})$ are coplanar is/are:

- (a) $\frac{5+\sqrt{33}}{4}$ (b) $\frac{-5+\sqrt{33}}{4}$ (c) $\frac{5-\sqrt{33}}{4}$ (d) $\frac{-5-\sqrt{33}}{4}$

6. If
$$\hat{\mathbf{i}} \times [(\overrightarrow{\mathbf{a}} - \hat{\mathbf{j}}) \times \hat{\mathbf{i}}] + \hat{\mathbf{j}} \times [(\overrightarrow{\mathbf{a}} - \hat{\mathbf{k}}) \times \hat{\mathbf{j}}] + \hat{\mathbf{k}} \times [(\overrightarrow{\mathbf{a}} - \hat{\mathbf{i}}) \times \hat{\mathbf{k}}] = 0$$
 and $\overrightarrow{\mathbf{a}} = x\hat{\mathbf{i}} + y\hat{\mathbf{j}} + z\hat{\mathbf{k}}$, then:

- (a) x + y = 1 (b) $y + z = \frac{1}{2}$ (c) x + z = 1
- (d) None of these

7. The value of expression $[\overrightarrow{a} \times \overrightarrow{b} \xrightarrow{c} \times \overrightarrow{d} \xrightarrow{e} \times \overrightarrow{f}]$ is equal to:

- (a) $[\overrightarrow{a} \overrightarrow{b} \overrightarrow{d}] [\overrightarrow{c} \overrightarrow{e} \overrightarrow{f}] [\overrightarrow{a} \overrightarrow{b} \overrightarrow{c}] [\overrightarrow{d} \overrightarrow{e} \overrightarrow{f}]$
- (b) $\begin{bmatrix} \overrightarrow{a} \overrightarrow{b} \overrightarrow{e} \end{bmatrix} \xrightarrow{\overrightarrow{f}} \xrightarrow{\overrightarrow{c}} \xrightarrow{\overrightarrow{d}} \xrightarrow{\overrightarrow{d$
- (c) $[\overrightarrow{c}\overrightarrow{d}\overrightarrow{a}][\overrightarrow{b}\overrightarrow{e}\overrightarrow{f}] [\overrightarrow{c}\overrightarrow{d}\overrightarrow{b}][\overrightarrow{a}\overrightarrow{e}\overrightarrow{f}]$
- (d) $[\mathbf{b} \mathbf{c} \mathbf{d}][\mathbf{a} \mathbf{e} \mathbf{f}] [\mathbf{b} \mathbf{c} \mathbf{f}][\mathbf{a} \mathbf{e} \mathbf{d}]$

8. If $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ are the position vectors of the points A, B, C and D respectively in three dimensional space and satisfy the relation $3\overrightarrow{\mathbf{a}} - 2\overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}} - 2\overrightarrow{\mathbf{d}} = 0$, then:

- (a) A, B, C and D are coplanar
- (b) The line joining the points B and D divides the line joining the point A and C in the ratio of 2:1
- (c) The line joining the points *A* and *C* divides the line joining the points *B* and *D* in the ratio of 1:1
- (d) The four vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}, \overrightarrow{\mathbf{c}}$ and $\overrightarrow{\mathbf{d}}$ are linearly dependent.
- **9.** If OABC is a tetrahedron with equal edges and $\hat{\mathbf{p}}$, $\hat{\mathbf{q}}$, $\hat{\mathbf{r}}$ are unit vectors along bisectors of

$$\overrightarrow{OA}, \overrightarrow{OB}: \overrightarrow{OB}, \overrightarrow{OC}: \overrightarrow{OC}, \overrightarrow{OA} \text{ respectively and } \hat{a} = \frac{\overrightarrow{OA}}{|\overrightarrow{OA}|}, \hat{b} = \frac{\overrightarrow{OB}}{|\overrightarrow{OB}|}, \hat{c} = \frac{\overrightarrow{OC}}{|\overrightarrow{OC}|}, \text{ then :}$$

(a) $\frac{[\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}]}{[\hat{\mathbf{p}}\hat{\mathbf{q}}\hat{\mathbf{r}}]} = \frac{3\sqrt{3}}{2}$

- (b) $\frac{\left[\hat{\mathbf{a}} + \hat{\mathbf{b}} \ \hat{\mathbf{b}} + \hat{\mathbf{c}} \ \hat{\mathbf{c}} + \hat{\mathbf{a}}\right]}{\left[\hat{\mathbf{p}} + \hat{\mathbf{q}} \ \hat{\mathbf{q}} + \hat{\mathbf{r}} \ \hat{\mathbf{r}} + \hat{\mathbf{p}}\right]} = \frac{3\sqrt{3}}{4}$
- (c) $\frac{\left[\hat{\mathbf{a}} + \hat{\mathbf{b}} \ \hat{\mathbf{b}} + \hat{\mathbf{c}} \ \hat{\mathbf{c}} + \hat{\mathbf{a}}\right]}{\left[\hat{\mathbf{p}} \ \hat{\mathbf{q}} \ \hat{\mathbf{r}}\right]} = \frac{3\sqrt{3}}{2}$
- (d) $\frac{[\hat{\mathbf{a}}\,\hat{\mathbf{b}}\,\hat{\mathbf{c}}]}{[\hat{\mathbf{p}}+\hat{\mathbf{q}}\,\,\hat{\mathbf{q}}+\hat{\mathbf{r}}\,\,\hat{\mathbf{r}}+\hat{\mathbf{p}}]} = \frac{3\sqrt{3}}{4}$

10. Let $\hat{\mathbf{a}}$ and $\hat{\mathbf{c}}$ are unit vectors and $|\vec{\mathbf{b}}| = 4$. If the angle between $\hat{\mathbf{a}}$ and $\hat{\mathbf{c}}$ is $\cos^{-1}\left(\frac{1}{4}\right)$; and

 \vec{b} - $2\hat{c}$ = $\lambda \hat{a}$, then the value of λ can be:

(a) 2

(b) -3

(c) 3

(d) -4

11. Consider the line L_1 : x = y = z and the line L_2 : 2x + y + z - 1 = 0 = 3x + y + 2z - 2, then:

- (a) The shortest distance between the two lines is $\frac{1}{\sqrt{2}}$
- (b) The shortest distance between the two lines is $\sqrt{2}$
- (c) Plane containing the line L_2 and parallel to line L_1 is z x + 1 = 0
- (d) Perpendicular distance of origin from plane containing line L_2 and parallel to line L_1 is $\frac{1}{\sqrt{2}}$

12. Let $\overrightarrow{\mathbf{r}} = \sin x (\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) + \cos y (\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) + 2(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$, where $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are three non-coplanar vectors. It is given that $\overrightarrow{\mathbf{r}}$ is perpendicular to $\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}$. The possible value(s) of $x^2 + y^2$ is/are:

(a) π^2

(b) $\frac{5\pi^2}{4}$

(c) $\frac{35\pi^2}{4}$

(d) $\frac{37\pi^2}{4}$

13. If $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = h \vec{a} + k \vec{b} = r \vec{c} + s \vec{d}$, where \vec{a} , \vec{b} are non-collinear and \vec{c} , \vec{d} are also non-collinear then:

(a) $h = [\overrightarrow{\mathbf{b}} \ \overrightarrow{\mathbf{c}} \ \overrightarrow{\mathbf{d}}]$

(b) $k = [\stackrel{\rightarrow}{\mathbf{a}} \stackrel{\rightarrow}{\mathbf{c}} \stackrel{\rightarrow}{\mathbf{d}}]$

(c) $r = [\stackrel{\rightarrow}{\mathbf{a}} \stackrel{\rightarrow}{\mathbf{b}} \stackrel{\rightarrow}{\mathbf{d}}]$

(d) $s = -\begin{bmatrix} \overrightarrow{\mathbf{a}} & \overrightarrow{\mathbf{b}} & \overrightarrow{\mathbf{c}} \end{bmatrix}$

14. Let a be a real number and $\vec{\alpha} = \hat{i} + 2\hat{j}$, $\vec{\beta} = 2\hat{i} + a\hat{j} + 10\hat{k}$, $\vec{\gamma} = 12\hat{i} + 20\hat{j} + a\hat{k}$ be three vectors, then $\vec{\alpha}$, $\vec{\beta}$ and $\vec{\gamma}$ are linearly independent for :

(a) a > 0

(b) a < 0

(c) a = 0

(d) No value of a

15. The volume of a right triangular prism $ABCA_1B_1C_1$ is equal to 3. If the position vectors of the vertices of the base ABC are A(1, 0, 1); B(2, 0, 0) and C(0, 1, 0), then the position vectors of the vertex A_1 can be :

(a) (2, 2, 2)

(b) (0, 2, 0)

(c) (0, -2, 2)

(d) (0, -2, 0)

16. If $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$, $\vec{b} = y\hat{i} + z\hat{j} + x\hat{k}$, and $\vec{c} = z\hat{i} + x\hat{j} + y\hat{k}$, then $\vec{a} \times (\vec{b} \times \vec{c})$ is:

- (a) Parallel to $(y-z)\hat{\mathbf{i}} + (z-x)\hat{\mathbf{j}} + (x-y)\hat{\mathbf{k}}$
- (b) Orthogonal to $\hat{i} + \hat{j} + \hat{k}$
- (c) Orthogonal to $(y+z)\hat{i}+(z+x)\hat{j}+(x+y)\hat{k}$,
- (d) Orthogonal to $x\hat{i} + y\hat{j} + z\hat{k}$

17. If a line has a vector equation, $\vec{r} = 2\hat{i} + 6\hat{j} + \lambda (\hat{i} - 3\hat{j})$ then which of the following statements holds good?

- (a) the line is parallel to $2\hat{i} + 6\hat{j}$
- (b) the line passes through the point $3\hat{i} + 3\hat{j}$
- (c) the line passes through the point $\hat{i} + 9\hat{j}$
- (d) the line is parallel to xy plane

18. Let M, N, P and Q be the mid points of the edges AB, CD, AC and BD respectively of the tetrahedron ABCD. Further, MN is perpendicular to both AB and CD and PQ is perpendicular to both AC and BD. Then which of the following is/are correct:

(a)
$$AB = CD$$

382

(b)
$$BC = DA$$

(c)
$$AC = BD$$

(d)
$$AN = BN$$

19. The solution vectors \vec{r} of the equation $\vec{r} \times \hat{i} = \hat{j} + \hat{k}$ and $\vec{r} \times \hat{j} = \hat{k} + \hat{i}$ represent two straight lines which are :

(a) Intersecting

(b) Non coplanar

(c) Coplanar

(d) Non intersecting

20. Which of the following statement(s) is/are incorrect?

(a) The lines
$$\frac{x-4}{-3} = \frac{y+6}{-1} = \frac{z+6}{-1}$$
 and $\frac{x-1}{-1} = \frac{y-2}{-2} = \frac{z-3}{2}$ are orthogonal

(b) The planes 3x - 2y - 4z = 3 and the plane x - y - z = 3 are orthogonal

(c) The function $f(x) = ln(e^{-2} + e^{x})$ is monotonic increasing $\forall x \in R$

(d) If g is the inverse of the function, $f(x) = \ln(e^{-2} + e^{x})$ then $g(x) = \ln(e^{x} - e^{-2})$

21. The lines with vector equations are; $\vec{\mathbf{r_1}} = -3\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + \lambda(-4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 2\hat{\mathbf{k}})$ and $\vec{\mathbf{r_2}} = -2\hat{\mathbf{i}} + 7\hat{\mathbf{j}} + \mu(-4\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}})$ are such that :

(a) they are coplanar

(b) they do not intersect

(c) they are skew

(d) the angle between them is $\tan^{-1}(3/7)$

1	1				Ans	wer	s				
1. 7.	(b, c, d) (a, b, c)	2. 8.	(a, c) (a, c, d)	3. 9.	(a, b, c) (a, d)	4. 10.	(a, d) (c, d)	5. 11.	(a, c) (a, d)	6. 12.	(a, c) (b, d)
13.	(b, c, d)	14.	(a, b, c)	15.	(a, d)	16.	(a, b, c, d)	17.	(b, c, d)	18.	
19.	(b, d)	20.	(a, b)	21.	(b, c, d)						100 Sec. 100000 100000 10000

Exercise-3: Comprehension Type Problems

Paragraph for Question Nos. 1 to 3

The vertices of $\triangle ABC$ are A(2, 0, 0), B(0, 1, 0), C(0, 0, 2). Its orthocentre is H and circumcentre is S. P is a point equidistant from A, B, C and the origin O.

- 1. The z-coordinate of H is:
 - (a) 1
- (b) 1/2
- (c) 1/6
- (d) 1/3

- 2. The y-coordinate of S is:
 - (a) 5/6
- (c) 1/6
- (d) 1/2

- 3. PA is equal to:
 - (a) 1
- (b) $\sqrt{2}$
- (c) $\sqrt{\frac{3}{2}}$

Paragraph for Question Nos. 4 to 6

Consider a plane $\pi: \overrightarrow{\mathbf{r}} \cdot \overrightarrow{\mathbf{n}} = d$ (where $\overrightarrow{\mathbf{n}}$ is not a unit vector). There are two points $A(\overrightarrow{\mathbf{a}})$ and $B(\mathbf{b})$ lying on the same side of the plane.

4. If foot of perpendicular from A and B to the plane π are P and Q respectively, then length of PQ

(a)
$$\frac{|\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}}) \cdot \overrightarrow{\mathbf{n}}}{|\overrightarrow{\mathbf{n}}|}$$

- (a) $\frac{|\overrightarrow{(b-a)} \cdot \overrightarrow{n}|}{|\overrightarrow{n}|}$ (b) $|\overrightarrow{(b-a)} \cdot \overrightarrow{n}|$ (c) $\frac{|\overrightarrow{(b-a)} \times \overrightarrow{n}|}{|\overrightarrow{n}|}$ (d) $|\overrightarrow{(b-a)} \times \overrightarrow{n}|$
- **5.** Reflection of $A(\mathbf{a})$ in the plane π has the position vector :
 - (a) $\overrightarrow{\mathbf{a}} + \frac{2}{(\overrightarrow{\mathbf{n}})^2} (d \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}) \overrightarrow{\mathbf{n}}$

(b) $\overrightarrow{\mathbf{a}} - \frac{1}{(\overrightarrow{\mathbf{n}})^2} (d - \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}) \overrightarrow{\mathbf{n}}$

(c) $\overrightarrow{\mathbf{a}} + \frac{2}{(\overrightarrow{\mathbf{n}})^2} (d + \overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{n}}) \overrightarrow{\mathbf{n}}$

- (d) $\overrightarrow{\mathbf{a}} + \frac{2}{(\overrightarrow{\mathbf{n}})^2} \overrightarrow{\mathbf{n}}$
- **6.** If a plane π_1 is drawn from the point $A(\vec{\mathbf{a}})$ and another plane π_2 is drawn from point $B(\vec{\mathbf{b}})$ parallel to $\pi,$ then the distance between the planes π_1 and π_2 is :

- (a) $\frac{|(\vec{a}-\vec{b})\cdot\vec{n}|}{|\vec{n}|}$ (b) $|(\vec{a}-\vec{b})\cdot\vec{n}|$ (c) $|(\vec{a}-\vec{b})\times\vec{n}|$ (d) $\frac{|(\vec{a}-\vec{b})\times\vec{n}|}{|\vec{n}|}$

Paragraph for Question Nos. 7 to 9

Consider a plane $\Pi: \overrightarrow{\mathbf{r}} \cdot (2\hat{\mathbf{i}} + \hat{\mathbf{j}} - \hat{\mathbf{k}}) = 5$, a line $L_1: \overrightarrow{\mathbf{r}} = (3\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}}) + \lambda(2\hat{\mathbf{i}} - 3\hat{\mathbf{j}} - \hat{\mathbf{k}})$ and a point A(3, -4, 1). L_2 is a line passing through A intersecting L_1 and parallel to plane Π .

7. Equation of L_2 is:

(a)
$$\overrightarrow{\mathbf{r}} = (1 + \lambda)\hat{\mathbf{i}} + (2 - 3\lambda)\hat{\mathbf{j}} + (1 - \lambda)\hat{\mathbf{k}}; \lambda \in \mathbb{R}$$

(b)
$$\overrightarrow{\mathbf{r}} = (3 + \lambda)\hat{\mathbf{i}} - (4 - 2\lambda)\hat{\mathbf{j}} + (1 + 3\lambda)\hat{\mathbf{k}}; \lambda \in \mathbb{R}$$

(c)
$$\overrightarrow{\mathbf{r}} = (3+\lambda)\hat{\mathbf{i}} - (4+3\lambda)\hat{\mathbf{j}} + (1-\lambda)\hat{\mathbf{k}}; \lambda \in \mathbb{R}$$

- (d) None of the above
- **8.** Plane containing L_1 and L_2 is:
 - (a) parallel to yz-plane

(b) parallel to x-axis

(c) parallel to y-axis

- (d) passing through origin
- **9.** Line L_1 intersects plane Π at Q and xy-plane at R the volume of tetrahedron OAQR is : (where 'O' is origin)
 - (a) 0
- (b) $\frac{14}{3}$
- (c) $\frac{3}{7}$
- (d) $\frac{7}{3}$

Paragraph for Question Nos. 10 to 11

Consider three planes:

$$2x + py + 6z = 8$$
; $x + 2y + qz = 5$ and $x + y + 3z = 4$

- 10. Three planes intersect at a point if:
 - (a) $p = 2, q \neq 3$
- (b) $p \neq 2, q \neq 3$
- (c) $p \neq 2, q = 3$
- (d) p = 2, q = 3
- 11. Three planes do not have any common point of intersection if:
 - (a) $p = 2, q \neq 3$
- (b) $p \neq 2, q \neq 3$
- (c) $p \neq 2, q = 3$
- (d) p = 2, q = 3

Paragraph for Question Nos. 12 to 14

The points A, B and C with position vectors $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ respectively lie on a circle centered at origin O. Let G and E be the centroid of $\triangle ABC$ and $\triangle ACD$ respectively where D is mid point of AB.

- **12.** If *OE* and *CD* are mutually perpendicular, then which of the following will be necessarily true?
 - (a) $|\overrightarrow{\mathbf{b}} \overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{c}} \overrightarrow{\mathbf{a}}|$

(b) $|\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{c}}|$

(c) $|\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{b}}|$

(d) $|\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{c}} - \overrightarrow{\mathbf{a}}| = |\overrightarrow{\mathbf{b}} - \overrightarrow{\mathbf{c}}|$

13. If GE and CD are mutually perpendicular, then orthocenter of $\triangle ABC$ must lie on :

(a) median through A

- (b) median through C
- (c) angle bisector through A
- (d) angle bisector through B

14. If $[\overrightarrow{AB} \overrightarrow{AC} \overrightarrow{AB} \times \overrightarrow{AC}] = \lambda [\overrightarrow{AE} \overrightarrow{AG} \overrightarrow{AE} \times \overrightarrow{AG}]$, then the value of λ is:

- (a) -18
- (b) 18
- (c) -324
- (d) 324

Paragraph for Question Nos. 15 to 16

Consider a tetrahedron D—ABC with position vectors if its angular points as A (1, 1, 1); B(1, 2, 3); C(1, 1, 2)

and centre of tetrahedron $\left(\frac{3}{2}, \frac{3}{4}, 2\right)$.

15. Shortest distance between the skew lines AB and CD:

- (a) $\frac{1}{2}$
- (b) $\frac{1}{3}$
- (c) $\frac{1}{4}$
- (d) $\frac{1}{5}$

16. If *N* be the foot of the perpendicular from point *D* on the plane face *ABC* then the position vector of *N* are :

- (a) (-1, 1, 2)
- (b) (1, -1, 2)
- (c) (1, 1, -2)
- (d) (-1, -1, 2)

Paragraph for Question Nos. 17 to 18

In a triangle AOB, R and Q are the points on the side OB and AB respectively such that 3OR = 2RB and 2AQ = 3QB. Let OQ and AR intersect at the point P (where O is origin).

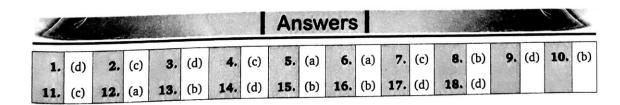
17. If the point P divides OQ in the ratio of μ :1, then μ is:

- (a) $\frac{2}{19}$
- (b) $\frac{2}{17}$
- (c) $\frac{2}{15}$
- (d) $\frac{10}{9}$

18. If the ratio of area of quadrilateral *PQBR* and area of $\triangle OPA$ is $\frac{\alpha}{\beta}$ then $(\beta - \alpha)$ is (where α and β are

coprime numbers):

- (a) 1
- (b) 9
- (c) 7
- (d) 0



Exercise-4: Matching Type Problems

1.

	Column-i	1	Column-II
(A)	Lines $\frac{x-1}{-2} = \frac{y+2}{3} = \frac{z}{-1}$ and	(P)	Intersecting
(B)	$\overrightarrow{\mathbf{r}} = (3\hat{i} - \hat{j} + \hat{k}) + t(\hat{i} + \hat{j} + \hat{k}) \text{ are}$ $\text{Lines } \frac{x+5}{1} = \frac{y-3}{7} = \frac{z+3}{3} \text{ and}$	(Q)	Perpendicular
	x-y+2z-4=0=2x+y-3z+5 are Lines $(x=t-3, y=-2t+1, z=-3t-2)$ and	(R)	Parallel
(D)	$\vec{\mathbf{r}} = (t+1)\hat{i} + (2t+3)\hat{j} + (-t-9)\hat{k} \text{ are}$ $\vec{\mathbf{r}} = (\hat{i} + 3\hat{j} - \hat{k}) + t (2\hat{i} - \hat{j} - \hat{k}) \text{ and}$	(S)	Skew
	$\overrightarrow{\mathbf{r}} = (-\hat{i} - 2\hat{j} + 5\hat{k}) + s\left(\hat{i} - 2\hat{j} + \frac{3}{4}\hat{k}\right) \text{ are}$	(T)	Coincident

2.

	Column-I		Column-II
(A)	If $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are three mutually perpendicular vectors where $ \overrightarrow{\mathbf{a}} = \overrightarrow{\mathbf{b}} = 2$, $ \overrightarrow{\mathbf{c}} = 1$, then $ \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} = 2$, $ \overrightarrow{\mathbf{c}} = 1$, then $ \overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}} = 2$, $ \overrightarrow{\mathbf{c}} = 1$, then	(P)	-12
(B)	If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are two unit vectors inclined at $\frac{\pi}{3}$, then $16[\overrightarrow{\mathbf{a}} \ \overrightarrow{\mathbf{b}} + (\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \ \overrightarrow{\mathbf{b}}]$ is	(Q)	0
	If $\overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ are orthogonal unit vectors and $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}} = \overrightarrow{\mathbf{a}}$ then $[\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}} \ \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} \ \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}]$ is	(R)	16
(D)	If $[\mathbf{x} \ \mathbf{y} \ \mathbf{a}] = [\mathbf{x} \ \mathbf{y} \ \mathbf{b}] = [\mathbf{a} \ \mathbf{b} \ \mathbf{c}] = 0$, each vector being a non-zero vector, then $[\mathbf{x} \ \mathbf{y} \ \mathbf{c}]$ is	(S)	1
		(T)	4

3.

	Column-l		Column-II
(A)	The number of real roots of equation $2^x + 3^x + 4^x - 9^x = 0$ is λ , then $\lambda^2 + 7$ is divisible by	(P)	2
(B)	Let ABC be a triangle whose centroid is G , orthocenter is H and circumcentre is the origin 'O'. If D is any point in the plane of the triangle such that not three of O , A , B , C and D are collinear satisfying the relation $\overrightarrow{AD} + \overrightarrow{BD} + \overrightarrow{CH} + \overrightarrow{3HG} = \lambda \overrightarrow{HD}$, then $\lambda + 4$ is divisible by		3
(C)	If A (adj A) = $\begin{bmatrix} 10 & 0 \\ 0 & 10 \end{bmatrix}$, then $5 A - 2$ is divisible by	(R)	4
(D)	\overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three unit vector such that $\overrightarrow{a} + \overrightarrow{b} = \sqrt{2} \overrightarrow{c}$, then $ 6\overrightarrow{a} - 8\overrightarrow{b} $ is divisible by	(S)	6
		(T)	10

Answers

- 1. $A \rightarrow Q$, S; $B \rightarrow R$; $C \rightarrow P$, Q; $D \rightarrow P$
- 2. $A \rightarrow R$; $B \rightarrow P$; $C \rightarrow S$; $D \rightarrow Q$
- 3. $A \rightarrow P$, R; $B \rightarrow P$, Q, S; $C \rightarrow P$, Q, R, S; $D \rightarrow P$, T

Exercise-5: Subjective Type Problems

1. A straight line L intersects perpendicularly both the lines :

$$\frac{x+2}{2} = \frac{y+6}{3} = \frac{z-34}{-10}$$
 and $\frac{x+6}{4} = \frac{y-7}{-3} = \frac{z-7}{-2}$,

then the square of perpendicular distance of origin from L is

- 2. If $\hat{\mathbf{a}}$, $\hat{\mathbf{b}}$ and $\hat{\mathbf{c}}$ are non-coplanar unit vectors such that $[\hat{\mathbf{a}}\hat{\mathbf{b}}\hat{\mathbf{c}}] = [\hat{\mathbf{b}} \times \hat{\mathbf{c}} \hat{\mathbf{c}} \times \hat{\mathbf{a}} \hat{\mathbf{a}} \times \hat{\mathbf{b}}]$, then find the projection of $\hat{\mathbf{b}} + \hat{\mathbf{c}}$ on $\hat{\mathbf{a}} \times \hat{\mathbf{b}}$.
- **3.** Let OA, OB, OC be coterminous edges of a cuboid. If l, m, n be the shortest distances between the sides OA, OB, OC and their respective skew body diagonals to them, respectively, then find $\frac{\left(\frac{1}{l^2} + \frac{1}{m^2} + \frac{1}{n^2}\right)}{\left(\frac{1}{l^2} + \frac{1}{l^2} + \frac{1}{l^2} + \frac{1}{l^2}\right)}$
- **4.** Let *OABC* be a tetrahedron whose edges are of unit length. If $\overrightarrow{OA} = \overrightarrow{a}$, $\overrightarrow{OB} = \overrightarrow{b}$ and degree $\overrightarrow{OC} = \alpha (\overrightarrow{a} + \overrightarrow{b}) + \beta (\overrightarrow{a} \times \overrightarrow{b})$, then $(\alpha \beta)^2 = \frac{p}{q}$ where p and q are relatively prime to each other. Find the value of $\left[\frac{q}{2p}\right]$ where [-] denotes greatest integer function.
- **5.** Let $\overrightarrow{\mathbf{v}}_0$ be a fixed vector and $\overrightarrow{\mathbf{v}}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. Then for $n \ge 0$ a sequence is defined $\overrightarrow{\mathbf{v}}_{n+1} = \overrightarrow{\mathbf{v}}_n + \left(\frac{1}{2}\right)^{n+1} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{n+1} \overrightarrow{\mathbf{v}}_0$ then $\lim_{n \to \infty} \overrightarrow{\mathbf{v}}_n = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$. Find $\frac{\alpha}{\beta}$.
- **6.** If A is the matrix $\begin{bmatrix} 1 & -3 \\ -1 & 1 \end{bmatrix}$, then $A \frac{1}{3}A^2 + \frac{1}{9}A^3 + \cdots + \left(-\frac{1}{3}\right)^n A^{n+1} + \cdots = \frac{3}{13}\begin{bmatrix} 1 & a \\ b & 1 \end{bmatrix}$. Find $\begin{vmatrix} a \\ b \end{vmatrix}$.
- 7. A sequence of 2×2 matrices $\{M_n\}$ is defined as follows $M_n = \begin{bmatrix} \frac{1}{(2n+1)!} & \frac{1}{(2n+2)!} \\ \sum_{k=0}^{n} \frac{(2n+2)!}{(2k+2)!} & \sum_{k=0}^{n} \frac{(2n+1)!}{(2k+1)!} \end{bmatrix}$ then $\lim_{n \to \infty} \det (M_n) = \lambda e^{-1}$. Find λ .
- **8.** Let $|\stackrel{\rightarrow}{\mathbf{a}}| = 1$, $|\stackrel{\rightarrow}{\mathbf{b}}| = 1$ and $|\stackrel{\rightarrow}{\mathbf{a}} + \stackrel{\rightarrow}{\mathbf{b}}| = \sqrt{3}$. If $\stackrel{\rightarrow}{\mathbf{c}}$ be a vector such that $\stackrel{\rightarrow}{\mathbf{c}} = \stackrel{\rightarrow}{\mathbf{a}} + 2\stackrel{\rightarrow}{\mathbf{b}} 3(\stackrel{\rightarrow}{\mathbf{a}} \times \stackrel{\rightarrow}{\mathbf{b}})$ and $p = |\stackrel{\rightarrow}{(\mathbf{a} \times \mathbf{b})} \times \stackrel{\rightarrow}{\mathbf{c}}|$, then find $[p^2]$. (where [] represents greatest integer function).

Vector & 3Dimensional Geometry

389

- **9.** Let $\overrightarrow{\mathbf{r}} = (\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}) \sin x + (\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}) \cos y + 2(\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}})$, where $\overrightarrow{\mathbf{a}}$, $\overrightarrow{\mathbf{b}}$, $\overrightarrow{\mathbf{c}}$ are non-zero and non-coplanar vectors. If $\overrightarrow{\mathbf{r}}$ is orthogonal to $\overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}} + \overrightarrow{\mathbf{c}}$, then find the minimum value of $\frac{4}{\pi^2}(x^2 + y^2)$.
- **10.** The plane denoted by $\Pi_1: 4x + 7y + 4z + 81 = 0$ is rotated through a right angle about its line of intersection with the plane $\Pi_2: 5x + 3y + 10z = 25$. If the plane in its new position be denoted by Π , and the distance of this plane from the origin is $\sqrt{53 \ k}$ where $k \in N$, then find k.
- **11.** ABCD is a regular tetrahedron, A is the origin and B lies on x-axis. ABC lies in the xy-plane $|\overrightarrow{AB}| = 2$. Under these conditions, the number of possible tetrahedrons is:
- **12.** A, B, C, D are four points in the space and satisfy $|\overrightarrow{AB}| = 3$, $|\overrightarrow{BC}| = 7$, $|\overrightarrow{CD}| = 11$ and $|\overrightarrow{DA}| = 9$. Then find the value of $\overrightarrow{AC} \cdot \overrightarrow{BD}$.
- **13.** Let *OABC* be a regular tetrahedron of edge length unity. Its volume be *V* and $6V = \sqrt{p/q}$ where *p* and *q* are relatively prime. The find the value of (p+q):
- **14.** If $\overrightarrow{\mathbf{a}}$ and $\overrightarrow{\mathbf{b}}$ are non zero, non collinear vectors and $\overrightarrow{\mathbf{a_1}} = \lambda \overrightarrow{\mathbf{a}} + 3 \overrightarrow{\mathbf{b}}$; $\overrightarrow{\mathbf{b_1}} = 2 \overrightarrow{\mathbf{a}} + \lambda \overrightarrow{\mathbf{b}}$; $\overrightarrow{\mathbf{c_1}} = \overrightarrow{\mathbf{a}} + \overrightarrow{\mathbf{b}}$. Find the sum of all possible real values of λ so that points A_1 , B_1 , C_1 whose position vectors are $\overrightarrow{\mathbf{a_1}}$, $\overrightarrow{\mathbf{b_1}}$, $\overrightarrow{\mathbf{c_1}}$ respectively are collinear is equal to .
- **15.** Let P and Q are two points on curve $y = \log_{\frac{1}{2}} \left(x \frac{1}{2} \right) + \log_{\frac{1}{2}} \sqrt{4x^2 4x + 1}$ and P is also on $x^2 + y^2 = 10$. Q lies inside the given circle such that its abscissa is integer. Find the smallest possible value of $\overrightarrow{OP} \cdot \overrightarrow{OQ}$ where 'O' being origin.
- **16.** In above problem find the largest possible value of $|\overrightarrow{PQ}|$.
- **17.** If a, b, c, l, m, $n \in R \{0\}$ such that al + bm + cn = 0, bl + cm + an = 0, cl + am + bn = 0. If a, b, c are distinct and $f(x) = ax^3 + bx^2 + cx + 2$. Find f(1):
- **18.** Let $\overrightarrow{\mu}$ and \overrightarrow{v} are unit vectors and $\overrightarrow{\omega}$ is vector such that $\overrightarrow{\mu} \times \overrightarrow{v} + \overrightarrow{\mu} = \overrightarrow{\omega}$ and $\overrightarrow{\omega} \times \overrightarrow{\mu} = \overrightarrow{v}$. The find the value of $[\overrightarrow{\mu} \quad \overrightarrow{v} \quad \overrightarrow{\omega}]$.

	1					Ansv	vers						
1.	5	2.	1	3.	2	4.	5	5.	2	6.	3	7.	1
8.	5	9,	5	10.	4	11.	8	12.	0	13.	0	14.	2
15.	4	16.	2	17.	2	18.	1						